microbik.ru
  1 2 3 ... 5 6

2.2.3. Выявление сезонных колебаний.

Сезонность связывается, как правило, со сменой природно-климатических условий в рамках ограниченного промежутка времени – годового периода. Влияние сезонности проявляется в аритмии производственных и других процессов: недогрузка производственных мощностей в одни периоды года и более интенсивное их использование в другие; неравномерное распределение внутри рамок года объемов грузооборота и товарооборота и т.д.

Под сезонными колебаниями понимают регулярные, периодические наступления внутригодовых подъемов и спадов производства, грузооборота и товарооборота и т. д., связанных со сменой времени года, а под сезонностью — ограниченность годового периода работ под влиянием того же природного фактора.

Задачи, которые возникают при исследовании сезонных временных рядов:

  1. определение наличия во временном ряду тренда и определение степени его гладкости;

  2. выявление наличия во временном ряду сезонных колебаний;

  3. фильтрация компонент ряда;

  4. анализ динамики сезонной волны;

  5. исследование факторов, определяющих сезонные колебания;

  6. прогнозирование тренд-сезонных процессов.

Анализ динамики, или эволюции, сезонной волны может рассматриваться как процесс решения трех взаимосвязанных задач:

  1. анализ динамики амплитуды сезонной волны в каждом месяце (квартале, неделе).

  2. анализ динамики точек экстремума сезонной волны.

  3. исследование изменений формы волны.

На рис 4.1 приведена укрупненная схема исследования сезонных временных рядов. Схема не определяет методов решения каждой задачи, методы могут изменяться, совершенствоваться со временем, но она определяет совокупность и последовательность вопросов, которые должны быть решены для полного исследования сезонного временного ряда.



рис 1. Схема комплексного исследования тренд-сезонных временных рядов.
Упорядоченная во времени последовательность наблюдений экономического процесса называется временным рядом, и если процесс подвержен периодическим колебаниям, имеющим определенный и постоянный период, равный годовому промежутку, то мы имеем дело с тренд-сезонным временным рядом (сезонным временным рядом).

Рассматривается тренд-сезонный временной ряд {Yt},, порождаемый аддитивным случайным процессом:

Yt = Ut+Vt+εt (15)

где Ut - тренд;

Vt - сезонная компонента;

εt - случайная компонента;

Т - число уровней наблюдения.

Проблема анализа сезонности заключается в исследовании собственно сезонных колебаний и в изучении того внешнего циклического механизма, который их вызывает. Для исследования сезонных колебаний вне связи с причинами, их порождающими, очевидно, необходимо отфильтровать из временного ряда {Yt} сезонную компоненту Vt и затем уже анализировать ее динамику. Большинство методов фильтрации построено таким образом, что предварительно выделяется тренд, а затем уже сезонная компонента. Тренд в чистом виде необходим и для анализа динамики сезонной волны.

При исследовании сезонной волны Vt чаще всего предполагается, что она не изменяется год от года, т.е. , i+km. На самом же деле такое предположение далеко от действительности, по крайней мере для большинства экономических процессов. Для сезонной волны характерно изменение со временем как ее размаха, так и формы. В результате возникает необходимость в анализе и предсказании изменений сезонной волны.
2.2.4. Сглаживание временных рядов экономических показателей.

С целью более четко выявить тенденцию развития исследуемого процесса, в том числе для дальнейшего применения методов прогнозирования на основе трендовых моделей, производят сглаживание (выравнивание) временных рядов.

Методы сглаживания временных рядов делятся на две основные группы:

  1. аналитическое выравнивание с использованием кривой, проведенной между конкретными уровнями ряда так, чтобы она отображала тенденцию, присущую ряду, и одновременно освобождала его от незначительных колебаний;

  2. механическое выравнивание отдельных уровней временного ряда с использованием фактических значений соседних уровней.

Суть методов механического сглаживания заключается в следующем. Берется несколько первых уровней временного ряда, образующих интервал сглаживания. Для них подбирается полином, степень которого должна быть меньше числа уровней, входящих в интервал сглаживания; с помощью полинома определяются новые, выровненные значения уровней в середине интервала сглаживания. Далее интервал сглаживания сдвигается на один уровень ряда вправо, вычисляется следующее сглаженное значение и т. д.

Самым простым методом механического сглаживания является метод простой скользящей средней.

Сначала для временного ряда

y1 , y2 , … , yn

определяется интервал сглаживания m(m<n) . Если необходимо сгладить мелкие беспорядочные колебания, то интервал сглаживания берут по возможности большим; интервал сглаживания уменьшают, если нужно сохранить более мелкие колебания. При прочих равных условиях интервал сглаживания рекомендуется брать нечетным. Для первых m уровней временного ряда вычисляется их средняя арифметическая; это будет сглаженное значение уровня ряда, находящегося в середине интервала сглаживания. Затем интервал сглаживания сдвигается на один уровень вправо, повторяется вычисление средней арифметической и т.д. Для вычисления сглаженных уровней ряда применяется формула:

, t > p, (16)

где (при нечетном m); для четных m формула (16) усложняется.

В результате такой процедуры получаются nm + 1 сглаженных значений уровней ряда; при этом первые p и последние p уровней ряда теряются (не сглаживаются).

Другой недостаток метода в том, что он применим лишь для рядов, имеющих линейную тенденцию.

Метод взвешенной скользящей средней отличается от предыдущего метода сглаживания тем, что уровни, входящие в интервал сглаживания, суммируются с разными весами. Это связано с тем, что аппроксимация ряда в пределах интервала сглаживания осуществляется с использованием полинома не первой степени, как в предыдущем случае, а степени, начиная со второй. Используется формула средней арифметической взвешенной:

, (17)

причем веса pt определяются с помощью метода наименьших квадратов. Эти веса рассчитаны для различных степеней аппроксимирующего полинома и различных интервалов сглаживания.

К этой же группе методов выравнивания временных рядов примыкает метод экспоненциального сглаживания. Его особенность заключается в том, что в процедуре нахождения сглаженного уровня используются значения только предшествующих уровней ряда, взятые с определенным весом, причем вес наблюдения уменьшается по мере удаления его от момента времени, для которого определяется сглаженное значение уровня ряда. Если для исходного временного ряда

y1 , y2 , … , yn

соответствующие сглаженные значения уровней обозначить через St, t = 1, 2, ..., n, то экспоненциальное сглаживание осуществляется по формуле:

(18)

где α - параметр сглаживания (0 < α < 1);

величина 1 - α называется коэффициентом дисконтирования.

Используя приведенное выше рекуррентное соотношение для всех уровней ряда, начиная с первого и кончая моментом времени t, можно получить, что экспоненциальная средняя, т.е. сглаженное данным методом значение уровня ряда, является взвешенной средней всех предшествующих уровней:

(19)

здесь S0— величина, характеризующая начальные условия.
2.3. Расчет показателей динамики развития экономических процессов.

Временной ряд тогда правильно отражает объективный процесс развития экономического явления, когда уровни этого ряда состоят из однородных, сопоставимых величин. Для несопоставимых величин вести расчет рассматриваемых ниже статистических показателей динамики неправомерно. Причины несопоставимости уровней временного ряда могут быть различными. В экономике чаще всего такими причинами является несопоставимость:

  • по территории ввиду изменения границ региона, по которому собираются статистические данные;

  • по кругу охватываемых объектов по подчинению или форме собственности ввиду перехода, например, части предприятий данного объединения в другое объединение;

  • по временным периодам, когда, например, данные за различные годы приведены по состоянию на разные даты;

  • уровней, вычисленных в различном масштабе измерения;

  • уровней ряда из-за различий в структуре совокупности, для которой они вычислены.

  • Возможны и другие причины несопоставимости.

При анализе временных рядов для определения изменений, происходящих в данном явлении, прежде всего вычисляют скорость развития этого явления во времени. Показателем скорости служит абсолютный прирост, вычисляемый по формуле

(20)

где yi — i-й уровень временного ряда (i = 2, 3, ..., n);

индекс k = 1, 2, ..., n-1 определяет начальный уровень и может быть выбран любым в зависимости от целей исследования:

при k = 1 получаются цепные показатели,

при k = i-1 получаются базисные показатели с начальным уровнем ряда в качестве базисного и т.д.

Величина, характеризующая скорость, т.е. прирост в единицу времени, носит название среднего абсолютного прироста:

(21)

В частности, средний абсолютный прирост за весь период наблюдения для данного временного ряда равен

(22)

и характеризует среднюю скорость изменения временного ряда.

Для определения относительной скорости изменения изучаемого явления в единицу времени используют относительные показатели: коэффициенты роста и прироста (если эти показатели выражены в процентах, то их называют соответственно темпами роста и прироста).

Коэффициент роста для i-гo периода вычисляется по формуле:

(23)

Ki(p) > 1, если уровень повышается; Ki(p)< 1, если уровень понижается; при Ki(p)=1 уровень не меняется.

Коэффициент прироста равен

(24)

или

(25)

На практике чаще применяют показатели темпа роста и темпа прироста:

(26)

где Ti(p) - темп прироста для i-го периода;
Ti(пp)= Ti(p) 100% (27)

или

(28)

где Ti(пp) — темп прироста для i-гo периода.

Темп прироста показывает, на сколько процентов уровень одного периода увеличился (уменьшился) по сравнению с уровнем другого периода, т.е. этот показатель выражает относительную величину прироста в процентах.

Важной характеристикой временного ряда является также средний уровень ряда. В интервальном ряду динамики с равноотстоящими во времени уровнями расчет среднего уровня ряда производится по формуле простой средней арифметической (здесь и далее суммирование ведется по всем периодам наблюдения):

(29)

Если интервальный ряд имеет неравноотстоящие во времени уровни, то средний уровень ряда (так называемая средняя хронологическая) вычисляется по формуле взвешенной арифметической средней, где роль весов играет продолжительность времени (например, количество лет), в течение которого уровень постоянен:

(30)

где t - число периодов времени, при которых значение уровня yt не изменяется. Для моментного ряда с равноотстоящими уровнями средняя хронологическая рассчитывается по формуле:

(31)

где n - число уровней ряда.

При анализе временных рядов часто возникает необходимость, кроме определения основных характеристик ряда, оценить зависимость изучаемого показателя yt от его значений, рассматриваемых с некоторым запаздыванием во времени. Зависимость значений уровней временного ряда от предыдущих (сдвиг на 1), предпредыдущих (сдвиг на 2) и так далее уровней того же временного ряда называется автокорреляцией во временном ряду. Для получения числовой характеристики такой внутренней зависимости вычисляют взаимную корреляционную функцию между исходным рядом yt и этим же рядом, сдвинутым во времени на величину . Такая функция называется автокорреляционной, она характеризует внутреннюю структуру временного ряда и состоит из множества коэффициентов автокорреляции (нециклических), рассчитываемых по формуле:

(32)

Задавая различные значения = 1, 2, 3,..., получаем последовательность значений

r1, r2, r3,…

На практике рекомендуется вычислять такие коэффициенты в количестве

от n/4 до n/3.

График автокорреляционной функции называется коррелограммом и показывает величину запаздывания, с которым изменение показателя yt сказывается на его последующих значениях. Величина сдвига , которому соответствует наибольший коэффициент автокорреляции, называется временным лагом.

В ряде случаев используется упрощенная формула для вычисления коэффициента автокорреляции:

, (33)
где средний уровень ряда (см. формулу (32)).

<< предыдущая страница   следующая страница >>