microbik.ru
  1 2 3 4 ... 6 7

Двойственная задача. Каждой задаче линейного программирования соответствует так называемая двойственная задача. В ней по сравнению с исходной задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или наоборот, вместо минимума - максимум). Задача, двойственная к двойственной - эта сама исходная задача. Сравним исходную задачу (слева) и двойственную к ней (справа):

45 Х1 + 80 Х2 → max , 400 W1 + 450 W2 → min ,

5 Х1 + 20 Х2 ≤ 400 , 5 W1 + 10 W2 ≥ 45,

10 Х1 + 15 Х2 ≤ 450 , 20 W1 + 15 W2 ≥ 80,

Х1 ≥ 0 , W1 ≥ 0,

Х2 ≥ 0 . W2 ≥ 0.

Почему двойственная задача столь важна? Можно доказать, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т.е. максимум в исходной задаче совпадает с минимумом в двойственной). При этом оптимальные значения W1 и W2 показывают стоимость материала и труда соответственно, если их оценивать по вкладу в целевую функцию. Чтобы не путать с рыночными ценами этих факторов производства, W1 и W2 называют "объективно обусловленными оценками" сырья и рабочей силы.

Линейное программирование как научно-практическая дисциплина. Из всех задач оптимизации задачи линейного программирования выделяются тем, что в них ограничения - системы линейных неравенств или равенств. Ограничения задают выпуклые линейные многогранники в конечном линейном пространстве. Целевые функции также линейны.

Впервые такие задачи решались советским математиком Л.В. Канторовичем (1912-1986) в 1930-х годах как задачи производственного менеджмента с целью оптимизации организации производства и производственных процессов, например, процессов загрузки станков и раскройки листов материалов. После второй мировой войны аналогичными задачами занялись в США. В 1975 г. Т. Купманс (1910-1985, родился в Нидерландах, работал в основном в США) и академик АН СССР Л.В. Канторович были награждены Нобелевскими премиями по экономике.

Рассмотрим несколько задач линейного программирования.

Задача об оптимизации смеси (упрощенный вариант). На химическом комбинате для оптимизации технологического процесса надо составить самую дешевую смесь, содержащую необходимое количество определенных веществ (обозначим их Т и Н). Энергетическая ценность смеси (в калориях) должна быть не менее заданной. Пусть для простоты смесь составляется из двух компонентов - К и С. Сколько каждого из них взять для включения в смесь? Исходные данные для расчетов приведены в табл.3.
Табл.3. Исходные данные в задаче об оптимизации смеси.





Содержание

в 1 унции К

Содержание

в 1 унции С

Потребность

Вещество Т

0,10 мг

0,25 мг

1,00 мг

Вещество Н

1,00 мг

0,25 мг

5,00 мг

Калории

110,00

120,00

400,00

Стоимость

1 унции, в центах

3,8

4,2





Задача линейного программирования имеет вид:

3,8 К + 4,2 С → min ,

0,10 К + 0,25 С ≥ 1,00 ,

1,00 К + 0,25 С ≥ 5,00 ,

110,00 К + 120,00 С ≥ 400,00 ,

К ≥ 0 ,

С ≥ 0 .

Ее графическое решение представлено на рис.4.

С

(1)

Рис.4. Графическое решение задачи об оптимизации смеси.
На рис.4 ради облегчения восприятия четыре прямые обозначены номерами (1) - (4). Прямая (1) - это прямая 1,00К + 0,25С = 5,00 (ограничение по веществу Н). Она проходит, как и показано на рисунке, через точки (5,0) на оси абсцисс и (0,20) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (1), в отличие от ранее рассмотренных случаев в предыдущей производственной задаче.

Прямая (2) - это прямая 110,00 К + 120,00 С = 400,00 (ограничение по калориям). Обратим внимание, что в области неотрицательных С она расположена всюду ниже прямой (1). Действительно, это верно при К=0, прямая (1) проходит через точку (0,20), а прямая (2) - через точку (0, 400/120). Точка пересечения двух прямых находится при решении системы уравнений

1,00 К + 0,25 С = 5,00 ,

110,00 К + 120,00 С = 400,00 .

Из первого уравнения К = 5 - 0,25 С. Подставим во второе: 110 (5- 0,25 С) + 120 С = 400, откуда 550 - 27,5 С + 120 С = 400. Следовательно, 150 = - 92,5 С, т.е. решение достигается при отрицательном С. Это и означает, что при всех положительных С прямая (2) лежит ниже прямой (1). Значит, если выполнено ограничения по Н, то обязательно выполнено и ограничение по калориям. Мы столкнулись с новым явлением - некоторые ограничения с математической точки зрения могут оказаться лишними. С экономической точки зрения они необходимы, отражают существенные черты постановки задачи, но в данном случае внутренняя структура задачи оказалась такова, что ограничение по калориям не участвует в формировании допустимой области параметров и нахождении решения.

Прямая (4) - это прямая 0,1 К + 0,25 С = 1 (ограничение по веществу Т). Она проходит, как и показано на рисунке, через точки (10,0) на оси абсцисс и (0,4) на оси ординат. Обратите внимание, что допустимые значения параметров (К,С) лежат выше прямой (4), как и для прямой (1).

Следовательно, область допустимых значений параметров (К, С) является неограниченной сверху. Из всей плоскости она выделяется осями координат (лежит в первом квадранте) и прямыми (1) и (4) (лежит выше этих прямых). Область допустимых значений параметров (К, С) можно назвать "неограниченным многоугольником". Минимум целевой функции 3,8 К + 4,2 С может достигаться только в вершинах этого "многоугольника". Вершин всего три. Это пересечения с осями абсцисс (10,0) и ординат (0,20) прямых (1) и (4) (в каждом случае из двух пересечений берется то, которое удовлетворяет обоим ограничениям). Третья вершина - это точка пересечения прямых (1) и (4), координаты которой находятся при решении системы уравнений

0,10 К + 0,25 С = 1,00 ,

1,00 К + 0,25 С = 5,00 .

Из второго уравнения К = 5 - 0,25 С, из первого 0,10 (5 - 0,25 С) + 0,25 С = 0,5 - 0,025 С + 0,25 С = 0,5 + 0,225 С = 1, откуда С = 0,5/0,225 = 20/9 и К = 5 - 5/9 = 40/9. Итак, А = (40/9; 20/9).

Прямая (3) на рис.4 - это прямая, соответствующая целевой функции 3,8 К + 4,2 С . Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А, через которую и проходит прямая (3). Следовательно, минимум равен 3,8х40/9 + 4,2х20/9 = 236/9. Задача об оптимизации смеси полностью решена.

Двойственная задача, построенная по описанным выше правилам, имеет приведенный ниже вид (мы повторяем здесь и исходную задачу об оптимизации смеси, чтобы наглядно продемонстрировать технологию построения двойственной задачи):

3,8 К + 4,2 С → min , W1 + 5 W2 + 400 W3 → max ,

0,10 К + 0,25 С ≥ 1,00 , 0,1 W1 + 1,10 W2 + 110 W3 ≤ 3,8 ,

1,00 К + 0,25 С ≥ 5,00 , 0,25W1 + 0,25 W2 + 120 W3 ≤ 4,2 ,

110,00 К + 120,00 С ≥ 400,00 , W1 ≥ 0 ,

К ≥ 0 , W2 ≥ 0 ,

С ≥ 0 . W3 ≥ 0 .

Минимальное значение в прямой задаче, как и должно быть, равно максимальному значению в двойственной задаче, т.е. оба числа равны 236/9. Интерпретация двойственных переменных: W1 - "стоимость" единицы вещества Т, а W2 - "стоимость" единицы вещества Н, измеренные "по их вкладу" в целевую функцию. При этом W3 = 0, поскольку ограничение на число калорий никак не участвует в формировании оптимального решения. Итак, W1 , W2 , W3 - это т.н. объективно обусловленные оценки (по Л.В. Канторовичу) ресурсов (веществ Т и Н, калорий).

Планирование номенклатуры и объемов выпуска. Вернемся к организации производства. Предприятие может выпускать автоматические кухни (вид кастрюль), кофеварки и самовары. В табл.4 приведены данные о производственных мощностях, имеющихся на предприятии (в штуках изделий).
Табл.4. Производственные мощности (в шт.)





Кухни

Кофеварки

Самовары

Штамповка

20000

30000

12000

Отделка

30000

10000

10000

Сборка

20000

12000

8000

Объем выпуска

Х1

Х2

Х3

Удельная прибыль (на одно изделие)

15

12

14


При этом штамповка и отделка проводятся на одном и том же оборудовании. Оно позволяет штамповать за заданное время или 20000 кухонь, либо 30000 кофеварок, либо и то, и другое, не в меньшем количестве. А вот сборка проводится на отдельных участках.

Задача линейного программирования имеет вид:

Х1 ≥ 0 , Х2 ≥ 0 , Х3 ≥ 0 , (0)

Х1 / 200 + Х2 / 300 + Х3 / 120 ≤ 100 , (1)

Х1 / 300 + Х2 / 100 + Х3 / 100 ≤ 100 , (2)

Х1 / 200 ≤ 100 , (3)

Х2 / 120 ≤ 100 , (4)

Х3 / 80 ≤ 100 , (5)

F = 15 Х1 + 12 Х2 + 14 Х3 → max .

Здесь:

(0) - обычное в экономике условие неотрицательности переменных,

(1) - ограничение по возможностям штамповки (выраженное для облегчения восприятия в процентах),

(2) - ограничение по возможностям отделки,

(3) - ограничение по сборке для кухонь,

(4) - то же для кофемолок,

(5) - то же для самоваров (как уже говорилось, все три вида изделий собираются на отдельных линиях).

Наконец, целевая функция F - общая прибыль предприятия.

Заметим, что неравенство (3) вытекает из неравенства (1), а неравенство (4) - из (2). Поэтому неравенства (3) и (4) можно сразу отбросить.

Отметим сразу любопытный факт. Как будет установлено, в оптимальном плане Х3 = 0, т.е. самовары выпускать невыгодно.

5. Методы решения задач линейного программирования

Методы решения задач линейного программирования относятся к вычислительной математике, а не к экономике. Однако экономисту полезно знать о свойствах интеллектуального инструмента, которым он пользуется.

С ростом мощности компьютеров необходимость применения изощренных методов снижается, поскольку во многих случаях время счета перестает быть лимитирующим фактором, поскольку весьма мало (доли секунд). Поэтому мы разберем лишь три метода.

Простой перебор. Возьмем некоторый многомерный параллелепипед, в котором лежит многогранник, задаваемый ограничениями. Как его построить? Например, если имеется ограничение типа 2Х1 + 5Х2 ≤ 10, то, очевидно, 0 ≤ Х1 ≤ 10/2 = 5 и 0 ≤ Х2 ≤ 10/2 = 5. Аналогичным образом от линейных ограничений общего вида можно перейти к ограничениям на отдельные переменные. Остается взять максимальные границы по каждой переменной. Если многогранник, задаваемый ограничениями, неограничен, как было в задаче о диете, можно похожим, но несколько более сложным образом выделить его "обращенную" к началу координат часть, содержащую решение, и заключить ее в многомерный параллелепипед.

Проведем перебор точек параллелепипеда с шагом 1/10n последовательно при n=2,3,…, вычисляя значения целевой функции и проверяя наличие ограничений. Из всех точек, удовлетворяющих ограничениям, возьмем ту, в которой целевая функция максимальна. Решение найдено! (Более строго выражаясь, найдено с точностью до 1/10n .)

Направленный перебор. Начнем с точки, удовлетворяющей ограничениям (ее можно найти простым перебором). Будем последовательно (или случайно - т.н. метод случайного поиска) менять ее координаты на определенную величину ∆, каждый раз в точку с более высоким значением целевой функции. Если выйдем на плоскость ограничения, будем двигаться по ней (находя одну из координат по уравнению ограничения). Затем движение по ребру (когда два ограничения-неравенства переходят в равенства)… Остановка - в вершине линейного многогранника. Решение найдено! (Более строго выражаясь, найдено с точностью до ∆ ; если необходимо, в окрестности найденного решения проводим направленный перебор с шагом ∆/2 , ∆/4 и т.д.)

Симплекс-метод. Этот один из первых специализированных методов оптимизации, нацеленный на решение задач линейного программирования, в то время как методы простого и направленного перебора могут быть применены для решения практически любой задачи оптимизации. Он был предложен американцем Г. Данцигом в 1951 г. Симплекс-метод состоит в продвижении по выпуклому многограннику ограничений от вершины к вершине, при котором на каждом шаге значение целевой функции улучшается до тех пор, пока не будет достигнут оптимум. Разберем пример со стр.208 книги [3].

Рассмотрим задачу линейного программирования, сформулированную выше при рассмотрении оптимизации номенклатуры и объемов выпуска:

F = 15 Х1 + 12 Х2 + 14 Х3 → max .

Х1 / 200 + Х2 / 300 + Х3 / 120 ≤ 100 ,

Х1 / 300 + Х2 / 100 + Х3 / 100 ≤ 100 ,

Х3 / 80 ≤ 100 .

Неотрицательность переменных не будем специально указывать, поскольку в задачах линейного программирования это предположение всегда принимается.

В соответствии с симплекс-методом введем т.н. "свободные переменные" Х4 , Х5 , Х6 , соответствующие недоиспользованным мощностям, т.е. перейдем к системе уравнений:

Х1 / 200 + Х2 / 300 + Х3 / 120 + Х4 = 100 ,

Х1 / 300 + Х2 / 100 + Х3 / 100 + Х5 = 100 ,

Х3 / 80 + Х6 = 100 ,

15 Х1 + 12 Х2 + 14 Х3 = F .

У этой системы имеется очевидное решение, соответствующее вершине многогранника допустимых значений переменных:

Х1 = Х2 = Х3 = 0, Х4 = Х5 = Х6 = 100, F = 0.

В терминах исходной задачи это значит, что ничего не надо выпускать. Такое решение приемлемо только на период летних отпусков.

Выбираем переменную, которая входит в целевую функцию F с самым большим положительным коэффициентом. Это Х1 .

Сравниваем частные от деления свободных членов в первых трех уравнениях на коэффициенты при только что выбранной переменной Х1:

100 / (1/200) = 20000, 100 / (1/300) =30000, 100/0 = + ∞ .

Выбираем строку, которой соответствует минимальное из всех положительных отношений. В рассматриваемом примере - это первая строка, которой соответствует отношение 20000.

Умножим первую строку на 200, чтобы получить Х1 с единичным коэффициентом:

Х1 + 2/3 Х2 + 2/1,2 Х3 + 200 Х4 = 20000 .

Затем умножим вновь полученную строку на (-1/300) и сложим со второй строкой, получим

7/900 Х2 + 4/900 Х3 - 2/3 Х4 + Х5 = 100/3.

Ту же преобразованную первую строку умножим на (-15) и сложим со строкой, в правой части которой стоит F, получим:

2 Х2 - 11 Х3 - 3000 Х4 = F - 300000.

В результате система уравнений преобразуется к виду, в котором переменная Х1 входит только в первое уравнение:

Х1 + 2/3 Х2 + 2/1,2 Х3 + 200 Х4 = 20000 ,

7/900 Х2 + 4/900 Х3 - 2/3 Х4 + Х5 = 100/3,

Х3 / 80 + Х6 = 100 ,

2 Х2 - 11 Х3 - 3000 Х4 = F - 300000.

Очевидно, у новой системы имеется улучшенное по сравнению с исходным решение, соответствующее вершине в шестимерном пространстве:

Х1 = 20000, Х2 = Х3 = Х4 = 0, Х5 = 100/3, Х6 = 100, F = 300000.

В терминах исходной задачи это значит, что надо выпускать только кухни. Такое решение приемлемо, если допустимо выпускать только один вид продукции.

Повторим описанную выше операцию. В строке с F имеется еще один положительный коэффициент - при Х2 (если бы положительных коэффициентов было несколько - мы взяли бы максимальный из них). На основе коэффициентов при Х2 (а не при Х1, как в первый раз) образуем частные от деления соответствующих свободных членов на эти коэффициенты:

20000 / (2/3) = 30000, (100/3) / (7/900) = 30000/7, 100/0 = + ∞.

Таким образом, нужно выбрать вторую строку, для которой имеем наименьшее положительное отношение 30000/7. Вторую строку умножим на 900/7 (чтобы коэффициент при Х2 равнялся 1). Затем добавим обновленную строку ко всем строкам, содержащим Х2 , предварительно умножив их на подходящие числа, т.е. такие, чтобы все коэффициенты при Х2 стали бы после сложения равны 0, за исключением коэффициента второй строки, который уже стал равняться 1. Получим систему уравнений:

Х1 + 9/7 Х3 + 1800/7 Х4 - 600/7 Х5 = 120000/7 ,

Х2 + 4/7 Х3 - 600/7 Х4 + 900/7Х5 = 30000/7,

Х3 / 80 + Х6 = 100 ,

- 85/7 Х3 - 19800/7 Х4 - 1800/7 Х5 = F - 308571.

Поскольку все переменные неотрицательны, то из последнего уравнения следует, что прибыль F достигает своего максимального значения, равного 308571, при Х3 = Х4 = Х5 = 0. Из остальных уравнений следует, что при этом Х1 = 120000/7 = 17143, Х2 = 30000/7 = 4286, Х6 = 100. Поскольку в строке с F не осталось ни одного положительного коэффициента при переменных, то алгоритм симплекс-метода закончил свою работу, оптимальное решение найдено.

Практические рекомендации таковы: надо выпустить 17143 кухни, вчетверо меньше, т.е. 4286 кофемолок, самоваров не выпускать вообще. При этом прибыль будет максимальной и равной 308571. Все производственное оборудование будет полностью загружено, за исключением линии по сборке самоваров.


<< предыдущая страница   следующая страница >>