microbik.ru
  1 2 3 ... 9 10

Треба оцінити ризик кожного з проектів.

Розрахунки середньої сподіваної норми доходу з інвестицій по кожному з проектів, а також середньоквадратичного відхилення як абсолютного ступеня ризику зведені у таблиці 3.6.

Таблиця 3.6 - Розрахунок характеристик проектів


Стан економіки

Ймовір-ність

i)

Норма

доходу %

i)

Доход %












1

2

3

4

5

6

7

Проект 1


Глибокий спад


0,05


-5,0


-0,25


-15,6


243,4


12,2

Невеликий спад

0,20

6,0

1,2

-4,6

21,2

4,2

Середнє зростання

0,50

12,0

6,0

1,4

2,0

1,0

Невеликий підйом

0,20

13,0

2,6

2,4

5,8

1,2

Потужний підйом

0,05

20,0

1,0

9,4

88,4

4,4







10,6

D = 23,0



продовження таблиці 3.6.

1

2

3

4

5

6

7

Проект 2


Глибокий спад


0,05


-2,0


-0,1


-12,6


158,8


7,9

Невеликий спад

0,20

9,0

1,8

-1,6

2,6

0,5

Середнє зростання

0,50

11,0

5,5

-0,4

0,2

0,1

Невеликий підйом

0,20

13,0

2,6

2,4

5,8

1,2

Потужний підйом

0,05

16,0

0,8

5,4

29,2

1,5







10,6 (х)




D = 11,2


Згідно з формулою (3.8) середньоквадратичне відхилення дорівнює:

проекту 1: ;

проекту 2: .

Отже, проект А має ширшу межу відхилень від очікуваної величини доходів.

Можна графічно відобразити розподіл значень ймовірностей кожного з проектів. Для цього перш за все треба припустити, що розподіл значень величин ймовірностей нормальний. Мається на увазі, що половина значень у розподілі менша за очікувану величину, а половина – більша. Можна мати два нормальних розподіли значень величин ймовірностей, але чим ближче лінія розподілу до очікуваної величини, тим більше впевненості в тому, що реальні результати ближчі до середньої або очікуваної величини. Більше шансів мають результати, ближчі до очікуваної величини там, де розподіл вужчий [ 17 ].

Як видно з рис. 3.2, розподіл значень ймовірностей для проектів 1 та 2 нормальний, але перший проект має ширшу межу відхилень від очікуваної величини. Це означає, що перший проект є ризикованішим, ніж другий.

Розподіли значень ймовірностей 1 і 2 проектів мають одну й ту саму очікувану величину доходу, але у другому проекті лінія розподілу вужча, що вказує на меншу мінливість доходу відносно очікуваної величини, а отже і менший ризик.

Таким чином, у наведеному прикладі за допомогою статистичного методу ризик вимірюється з урахуванням мінливості очікуваних доходів. Чим більше коливаються доходи, тим вищий ризик. Цю мінливість при статистичному методі вимірюють за допомогою середньоквадратичного відхилення.

Дисперсія і середньоквадратичне відхилення виступають мірою абсолютної мінливості. При кількісному аналізі ризиків застосовують також КОЕФІЦІЄНТ ВАРІАЦІЇ , що є відносною мірою мінливості.






Розподіл 2 проекту



Розподіл 1 проекту

Сподіваний доход

Рис. 3.2 - Нормальний розподіл значень імовірностей – проект 1 і 2.
КОЕФІЦІЄНТ ВАРІАЦІЇ – співвідношення середньоквадратичного відхилення результатів до середньої (очікуваної) величини результатів.
Формула для розрахунку коефіцієнта варіації має вигляд
. (3.9)
Коефіцієнт варіації - це відносна величина. Тому на його розмір не впливають абсолютні значення показника, що аналізується. За допомогою коефіцієнта варіації можна порівнювати мінливість ознак, що виражені у різних одиницях вимірювання. Коефіцієнт варіації може змінюватися від 0 до 100%. Чим більше коефіцієнт, тим сильніша мінливість. Існує така якісна оцінка різних значень коефіцієнта варіації:

до 10% - слабка мінливість;

10-25% - помірна мінливість;

більше 25% - висока мінливість.
Розглянемо дві ситуації, що наведені у [6 ].
ПРИКЛАД. Є можливість вибору виробництва та реалізації двох наборів товарів широкого вжитку. За даними відділу маркетингу, яким були проведені обстеження ніші ринку, доход від виробництва та реалізації першого набору товарів залежить від конкретної імовірнісної економічної ситуації. Мають місце два рівнозначно ймовірних доходи: 210 тис. грн., за умови вдалої реалізації першого набору товарів і 110 тис. грн. коли результати менш вдалі. Доход від реалізації другого набору товарів дорівнює в одному випадку 151 тис. грн., але не виключена можливість малого попиту на цю продукцію, коли доход дорівнюватиме всього 51тис. грн.

У табл. 3.7 зведені результати та їх ймовірності, одержані відділом маркетинг
Таблиця 3.7 - Порівняння варіантів виробництва та реалізації товарів


Варіанти виробництва та реалізації товарів

Результат 1

Результат 2

Ймовірність

1)

Доход,

тис. грн.

1)

Ймовірність

2)

Доход,

тис. грн.

2)

Перший

0,5

210

0,5

110

Другий

0,99

151

0,01

51


Треба оцінити ступінь ризику і прийняти рішення щодо випуску одного з двох наборів товарів.

Розрахунки сподіваних доходів кожного з варіантів виробництва та реалізації товарів, а також абсолютної та відносної мінливості можливих результатів наведені в табл. 3.8.
Таблиця 3.8 - Розрахунок характеристик варіантів виробництва та реалізації товарів.

Можливі результати

Ймовір-ність

i)

Доход,

тис. грн.

(xi)

Сподіва-ний доход, тис. грн.



і - х)

і – х)2

і - х)2 · Рі

Перший варіант виробництва

Результат 1



0,5



210



105



50



2500



1250

Результат 2

0,5

110

55

-50

2500

1250







160 (х)

D=2500

Другий варіант виробництва

Результат 1



0,99



151



149,5



1



1



0,99

Результат 2

0,01

51

0,5

99

9801

98,01







150 (х)

D=99


<< предыдущая страница   следующая страница >>