microbik.ru
1
Вопрос 20. Применение двигателей постоянного тока в природе рудничных машин.
Электродвигатели постоянного токаэлектрические машины, преобразующие электрическую энергию постоянного тока в механическую.
Электродвигатели постоянного тока предназначены для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями (высокая равномерность вращения и высокая перегрузочная способность).


















Вопрос 56. Потери энергии в ЭП. Энергетические показатели двигателей постоянного тока в переходных режимах.













Вопрос 73. Принципы автоматического управления пусков ЭД в разомкнутых системах.








Вопрос 80. Типовые схемы включения, реверсирования, регулирования, торможения и остановки электропривода.

Управление асинхронными двигателями (АД)

Схема управления с реверсивным магнитным пускателем (МП)

Схема (рис. 17.10) включает реверсивный МП и кнопки управления SB1 (Вперед), SB2 (Назад), SB3 (Стоп).

 

Схема обеспечивает: дистанционный пуск, реверсирование и останов, защиту двигателя от перегрузки, защиту от самозапуска.

МП состоит из двух контакторов переменного тока КМ1 и КМ2 с главными и вспомогательными контактами (блок-контактами) и тепловыми реле КК с размыкающим контактом. Сведения о МП приведены в главе 9.

Для пуска двигателя оператор нажимает на кнопку SB1,nu6o SB2. Катушка КМ1 (либо КМ2) получает питание, контактор срабатывает, включая контакты в цепи статора и блокирует пусковую кнопку. Двигатель разгоняется. При перегрузке (если ток статора длительно превышает 1,1 — 1,2 номинального значения) срабатывают тепловые реле КК, отключая своим контактом цепь питания катушки. В МП предусмотрена электрическая блокировка от одновременного включения контакторов.

Для остановки оператор нажимает на кнопку SB3 (Стоп).

Для защиты от коротких замыканий используется автоматический выключатель OF с электродинамическим расцепителем.

http://proelectro2.ru/images/docs2/image681.jpg

Рис. 17.10. Схема управления АД с реверсивным МП

Схема управления АД с узлом электродинамического

торможения

Схема (рис. 17.11) включает магнитный пускатель КМ, кнопки управления SB1 (Пуск), SB2 (Стоп), контактор электродинамического торможения КМ1, выпрямитель V, питающий реле времени КТ, и реостат R, ограничивающий тормозной ток статора. Предохранители FA защищают цепи управления с коротких замыканий.

Пуск АД осуществляется нажатием на кнопку SB1 (Пуск). Контактор КМ включает главные контакты в цепи статора АД, блокирует пусковую кнопку, отключает цепь контактора КМ1 и включает катушку реле КТ. АД запускается в режиме прямого пуска.

Для остановки АД нажимают на кнопку SB2 (Стоп). КМ отключается, отключив статор от сети переменного тока. Одновременно включается КМ1, и постоянное напряжение выпрямителя подается в статор АД. Сопротивление R позволяет регулировать величину тока динамического торможения и, тем самым, интенсивность торможения. Время торможения определяется уставкой реле времени КТ. По его истечении контакт КТ с выдержкой времени на отключение размыкает цепь КМ1, который отключается и отключает обмотку статора от выпрямителя. Схема возвращается в исходное состояние.

Управление двухскоростным АД

Типовая схема управления двухскоростным АД представлена на рис. 17.12. Схема включает полюснопереключаемый АД, контакторы КМ1—КМ4, блокировочное реле KV, двухцепные кнопки SB1 (Вперед), SB2 (Назад), SB4, SB5, а также кнопку SB3 (Стоп).

 

http://proelectro2.ru/images/docs2/image683.jpg




Рис. 17.11. Схема управления АД с динамическим торможением

 Две скорости АД получают путем соединения обмотки статора в треугольник (контактор КМ2), либо в двойную звезду (контактор КМ1).

Схема обеспечивает пуск и реверсирование АД, его работу на двух скоростях, защиту АД от перегрузки и самозапуска.

Пуску АД «вперед» или «назад» предшествует предварительное соединение его обмоток в треугольник (включают КМ2), что соответствует низкой скорости, либо в двойную звезду ( включают КМ1) — высокая скорость. При этом включается реле блокировки KV, разрешающее запуск двигателя, благодаря включению его контактов в цепи катушек контакторов КМЗ и КМ4. Нажав на кнопку SB1, либо SB2, оператор запускает двигатель «вперед» или «назад».

http://proelectro2.ru/images/docs2/image685.jpg

Одновременное включение контакторов КМ1КМ4 исключается применением двухцепных кнопок, а также пере крестным включением размыкающих блок-контактов контакторов в цепи питания их катушек.

Типовая схема управления АД с фазным ротором

Схема включает АД с фазным ротором, типовую панель управления серии ПДУ6220, пускорегулирующие реостаты Rd1, Rd2, реостат динамического торможения Rdm, а также командоаппарат (рис. 17.13).

Схема обеспечивает пуск АД в две ступени в функции независимой выдержки времени, автоматическое динамическое

http://proelectro2.ru/images/docs2/image687.jpg

торможение, максимальную защиту АД (реле тока FA1—FA3), защиту от самозапуска.

Командоаппарат SA, имеющий нейтральное положение О и три равнозначных положения влево и вправо (/, 2, 3), позволяет выбрать режимы работы. В нейтральной позиции О реле KV включено и обеспечивает готовность ЭП к пуску. При переводе в любое положение /, 2, 3, включается линейный контактор КМ2, и на статор М подается напряжение. Одновременно включается КМ5, включающий катушку YA тормозного электромагнита, который растормаживает вал АД. Получает питание реле времени КТЗ, обеспечивающее выдержку времени при динамическом торможении.

Автоматический пуск в функции времени при переводе SA, например, в положение 3 происходит благодаря последовательному шунтированию пусковых ступеней контакторами КМЗ и КМ4. Выдержки времени на их включение обеспечиваются реле времени КТ1 и КТ2.

Автоматическое динамическое торможение обеспечивается при переводе рукоятки SA в положение 0. При этом КМ2 и КМ5 отключаются, КМ1 включается, и на статор подается постоянное напряжение. По истечении выдержки времени торможения реле КТЗ отключается и отключает контактор КМ1. Одновременно катушка тормозного электромагнита YA теряет питание, осуществляется механическое торможение.

Асинхронный ЭП с тиристорным регулятором напряжения

На рис. 17.14 представлена типовая схема замкнутой (имеющей обратные связи) системы автоматического регулирования (САР) скорости вращения и тока АД крановых ЭП.

http://proelectro2.ru/images/docs2/image689.jpg

Рис. 17.14. Типовая САР с АЭД и тиристорным регулятором напряжения

ЭП включает АД с подключенными к цепи ротора пускорегулирующими сопротивлениями, тиристорный регулятор напряжения типа РСТ на тиристорах VS1VS6, систему импульсно-фазового управления (СИФУ) ими и цепи обратных связей.

Реверсирование АД осуществляется контакторами КМ1, КМ2, а вал двигателя тормозится и фиксируется посредством тормозного электромагнита YB. Расширение диапазона регулирования достигается применением пускорегулирующих сопротивлений, коммутируемых контакторами КМЗ и КМ4.

Замкнутая САР с тиристорным регулятором напряжения АД имеет обратные связи (ОС) по скорости (тахогенератор BR) и по току (трансформаторы тока ТА и блоки токоограничения УТО, блок нелинейности по току НТ, блок защиты по току МТ). Первая обеспечивает стабилизацию скорости — высокую жесткость характеристик во всем диапазоне регулирования, вторая — ограничение тока в пределах до 1,5 номинального.

Напряжение управления с командоконтроллера КК подается на блок задания скорости БЗС. С него задающее напряжение, соответствующее заданному значению скорости АД, подается на узел сравнения, куда поступает также напряжение ОС по скорости. Результирующее напряжение управления подается на вход усилителей У1, РУ, У2. От напряжения У2 зависит фаза импульсов СИФУ, подаваемых на управляющие электроды тиристоров, и, следовательно, величина напряжения РСТ, подаваемого на АД.

Сигнал с блока логики поступает также на контакторы КМ1, либо КМ2, определяя направление вращения АД.

Следящий электропривод с АД

Следящим ЭП называют замкнутую САР, которая в соответствии с произвольно изменяющимся законом управления с заданной точностью воспроизводит движение рабочего органа машины.

Следящие ЭП включают, как правило, датчики входной и выходной величин, измеритель рассогласования, систему управления исполнительным электродвигателем, который посредством механической передачи связан с рабочим органом.

Схема следящего ЭП с асинхронным двухфазным исполнительным двигателем М представлена на рис. 17.15. Закон управления задается сельсином — датчиком СД и воспринимается сельсином — приемником СП. Напряжение рассогласования U снимается со статора СП и поступает на вход фазочувствительного усилителя У1. Величина U пропорциональна разности углов φ и φ, а фаза определяется знаком разности этих углов. Напряжения U или U запускают один из каналов СИФУ. Тиристоры VS1, VS2 и VS5, VS6 отпираются, на обмотки ОВ и ОУ подаются напряжения, пропорциональные сигналу рассогласования. Двигатель М вращается, уменьшая

http://proelectro2.ru/images/docs2/image691.jpg

Рис. 17.15. Схема следящего ЭП с исполнительным двухфазным АД

величину рассогласования. При включении VS3, VS4 М вращается в другую сторону. Таким образом, привод обеспечивает отработку произвольного угла рассогласования произвольного знака.

Схемы управления двигателями постоянного тока


Типовые схемы релейно-контакторного управления (РКУ) двигателями постоянного тока (ДПТ) обеспечивают автоматический пуск, реверсирование и ступенчатое регулирование скорости вращения ДПТ, автоматическое электрическое торможение.

На рис. 17.17 представлена типовая схема РКУ, обеспечивающая пуск ДПТ в функции независимой выдержки времени в три ступени, регулирование скорости ослаблением магнитного потока, динамическое торможение в функции ЭДС, защиту от коротких замыканий, обрыва поля ДПТ, от само-шпуска после исчезновения и появления напряжения. Управляется схема командоконтроллером SA, имеющим секции и четыре положения — нулевое и три рабочих.

Типовые ЭП с силовыми промежуточными магнитными усилителями (ПМУ) используются для САР механизмов подачи металлорежущих станков и иных механизмов, требующих обеспечение диапазона регулирования скорости до 100:1. ПМУ (рис. 17.18, а) включает пары силовых обмоток w, встречно-параллельно включенные в каждую фазу вентили В1, к которым подключается мостовой выпрямитель В2. Обмотка якоря Д подключена к зажимам выпрямителя В2, а обмотка возбуждения питается от отдельного выпрямителя, не показанного в схеме. Фазные силовые обмотки располагаются на отдельных замкнутых сердечниках, охваченных обмотками управления и обратных связей wi и смещения щ.

Регулирование напряжения происходит путем намагничивания сердечников ПМУ, что изменяет индуктивное сопротивление рабочих обмоток. Чем больше намагничивающий ток обмотки управления, тем меньше сопротивление рабочих обмоток и больше выходное напряжение ПМУ, т.е. напряжение на якоре и, следовательно, скорость двигателя.

Принцип действия замкнутой САР сводится к следующему. Задающее напряжение Uj снимается с задающего потенциометра ПЗ, сравнивается с напряжением Uqq тахоге-нератора 77". Результирующее напряжение подается на вход транзисторного усилителя с диодным ограничителем Д1, Д2. Выходной сигнал усилителя поступает на обмотку управления, ток которой определяет величину выходного постоянного напряжения ПМУ. Обмотка смещения служит для линеаризации начального участка характеристики ПМУ «вход-выход», т.е. зависимости тока рабочей обмотки от тока управления усилителя.

Механические характеристики замкнутой САР с ПМУ представлены на рис. 17.16, 6.

Тиристорные ЭП постоянного тока. Используются для механизмов с широким диапазоном регулирования скорости, необходимостью ограничения моментов и токов двигателя и др. На рис. 17.19 представлена схема комплектного тиристорного ЭП серии ЭТЗР с ДПТ серии ПБСТ либо 4ПО (4ПФ). Замкнутая САР с отрицательной обратной связью по скорости и нелинейной — по току обеспечивает высокую жесткость механических характеристик в диапазоне регулирования 2000:1, ограничение тока якоря и момента на валу ДПТ.

Силовые цепи реверсивного тиристорного преобразователя ТП состоят из двух вентильных групп (Т1,ТЗ, Г5) и {Т2,Т4,Т6}, уравнительных реакторов Др1 и Др2, сглаживающего дросселя ДрЗ.

Задающее напряжение U подается на узел сравнения с диодным ограничителем Д302, куда подается также напряжение обратной связи по скорости U. Результирующее напряжение поступает на вход усилителя БУ, куда подается также пилообразное напряжение блока БУК Их разность определяет угол управления тиристорами, выходное напряжение ТП и, следовательно, скорость вращения ДПТ.

Необходимая жесткость механических характеристик во всем диапазоне обеспечивается жесткой отрицательной обратной связью по скорости, осуществляемой посредством тахогенератора ТП В схеме предусмотрены токовая отсечка (реле РП1 и РП2) и упреждающее токоограничение, что обеспечивает пуск ЭП с неизменным током якоря, равным току упора (1,5—2 I), и максимальную токовую защиту.

ЭП постоянного тона с микропроцессорным управлением

Для перемещения и точного позиционирования рабочих органов робототехнических механизмов используются электроприводы с микропроцессорным управлением (ЭПМПУ). Схема типового ЭПМПУ с аналогово-цифровыми узлами представлена на рис. 17.20.

ДПТ М питается от реверсивного преобразователя на тиристорах VS1—VS6 и VS7—VS12. М связан с рабочим органом, тахогенератором ТГи датчиком положения ДП. Контроль тока якоря осуществляется датчиком тока ДТ.

 

http://proelectro2.ru/images/docs2/image699.jpg

 http://proelectro2.ru/images/docs2/image703.jpg

 ЭПМПУ построен по принципу подчиненного регулирования координат рабочего органа. Имеет обратные связи по скорости {ТГ и регулятор скорости PQ и току {ДТ и регулятор тока РТ). Стабилитроны VD1,VD2 обеспечивают ограничение системой тока и момента ДПТ.

Микропроцессорная система включает микропроцессор МП, устройства памяти ОЗУ и ПЗУ, устройства сопряжения УС1УСЗ, цифровой датчик положения ДП, цифро-аналоговый преобразователь ЦАП, обеспечивающий выходной сигнал задания скорости. Сигнал задания положения подается с терминала положения Г через УСЗ. Оптимальный график движения ЭП записывается в ПЗУ и определяет работу цифрового регулятора.

Выходное напряжение управления U регулятора поступает на систему импульсно-фазового управления СИФУ, которая определяет напряжение 777 и скорость вращения М.

 

В качестве МП-системы используются серийные микроЭВМ, либо программируемые контроллеры типа «Электроника К1-20»

и Др.