microbik.ru
1 2 ... 6 7


Проблемы, заблуждения и ошибки в электродинамике. Часть 3

Часть 3. Два вида зарядов в электродинамике.


Корнева М.В., Кулигин В.А., Кулигин Г.А. (Исследовательская группа «Анализ»)

Аннотация. Доказано, что заряды в уравнениях Максвелла существуют два вида зарядов. Показано, что учет этих зарядов ведет к разделению уравнений на две независимых группы: уравнения для волн и уравнения для полей зарядов. Показано, что только такой подход избавляет электродинамику от многих противоречий, заблуждений и предрассудков.

Введение


«Группа «Анализ» не ставит своей специальной задачей выдвижение каких-либо гипотез. Она четко понимает, что строить новую науку на гнилом основании – авантюризм и безответственность. Главная цель – очистить физические теории от внутренних противоречий, математических, физических и гносеологических ошибок, чтобы создать платформу для новых исследований.» [1].

Теперь мы перейдем к анализу формальных «доказательств», из которых следуют ошибочные или некорректные выводы. В настоящее время эти выводы превратились в предрассудки. В этой части речь будет идти о калибровках и единственности решений уравнений Максвелла. Она является логическим продолжением Второй части обзора «Проблемы, заблуждения и ошибки в электродинамике».

Как известно, что для волнового уравнения доказана теорема существования и единственности решения при заданных начальных и граничных условиях. Уравнения для полей Е и Н можно представить в виде волновых уравнений и использовать теорему о существовании и единственности решения.

Однако сейчас мы будем говорить не о математической, а о физической единственности решения. Причина в том, что решения одной и той же физической задачи может иметь различные функциональные выражения, интерпретация которых может оказаться взаимоисключающей. Результат зависит как от начальных и граничных условий, так и от выбора калибровки уравнений Максвелла.

В одних случаях в решении могут появиться продольные волны, существование которых противоречит эксперименту. В других случаях появляется мгновенное действие на расстоянии, которое противоречит современной концепции о существовании «предельной скорости распространения взаимодействий».

Эти вопросы достаточно широко обсуждаются в зарубежной литературе [2] (см. библиографию в этой работе). В российских «толстых» научных журналах обсуждение подобных проблем не допускается. «Толстые журналы» это шаг в прошлое, т.е. схоластика и тиражирование закоренелых ошибок. Согласно критерию Гинзбурга-Круглякова [3]: “ЕСТЬ МИРОВАЯ НАУКА, А ВСЕ, ЧТО НЕ ВПИСЫВАЕТСЯ В ЕЕ КРИТЕРИИ – ЭТО ЛЖЕНАУКА”. Этот критерий обрекает российскую науку на глубокий застой и ошибки.
  1. Продольные волны


Рассмотрим проблему продольных волн в калибровке Лоренца. Продольные волны могут образоваться как скалярным потенциалом, так и безвихревой частью векторного потенциала. В [4] относительно преобразования потенциалов в калибровках пишется: «Описанная неоднозначность потенциалов всегда дает возможность выбрать их так, чтобы они удовлетворяли одному произвольному, дополнительному условию, - одному, так как мы можем произвольно выбрать только одну функцию ψ в (18.12). В частности, всегда можно выбрать потенциалы так, чтобы скалярный потенциал был бы равен нулю».

Попробуем реализовать такую возможность, опираясь на уравнения Максвелла в калибровке Лоренца. Для удобства мы представили векторный потенциал и ток как сумму вихревой и безвихревой компонент:

A = A1 + A2; (div A 1 = 0; rot A2= 0); j = j1 + j2; (div j1 = 0; rot j2 = 0)

Применим операцию div к волновому уравнению для векторного потенциала A2 и продифференцируем по времени волновое уравнение для скалярного потенциала. Сложив результаты, получим



или

Итак, мы получили уравнение непрерывности для тока.

С другой стороны, мы должны потребовать отсутствия продольных волн скалярного и векторного потенциала, как об этом пишется в работе [5] (Глава 7). Это будет возможно, когда поле скалярного потенциала будет «подавлено» безвихревой частью поля векторного потенциала ЕL = 0. Запишем это условие, присоединив к нему уравнение непрерывности для векторного потенциала



Если теперь мы применим к этим уравнениям оператор , то получим



Исключая плотность тока ток или плотность пространственного заряда, получим



Как мы видим, плотность тока и плотность пространственного заряда должны удовлетворять волновым уравнениям. Следовательно, плотность пространственного заряда имеет запаздывающий характер (r - ct), соответственно, плотность тока будет равна j = (r - ct)c . А это и есть безынерциальная плотность тока, и заряда. Таким образом, в уравнениях Максвелла фигурируют два вида проводимостей: проводимость, обусловленная инерциальными носителями, и проводимость безынерциальных носителей (положительных и отрицательных). Тем самым мы другим способом подтвердили выводы Второй части нашей работы [6].


следующая страница >>