microbik.ru
1 2 3 4
ДЕШЕВЫЙ ВОДОРОД И ТОПЛИВО ИЗ ВОДЫ КАПИЛЯРНЫМ ЭЛЕКТРООСМОСОМ

Экспериментально обнаружен и исследован новый эффект «холодного» высоковольтного электросмоса испарения и малозатратной высоковольтной диссоциации жидкостей.на основе этого открытия автором предложена и запатентована новая высокоэффективная малозатратная технология получения топливного газа из некоторых водных растворов на основе высоковольтного капиллярного электросмоса

ВВЕДЕНИЕ

Эта статья – о новом перспективном научно-техническом направлении водородной энергетики. Она информирует о том, что в России открыт и экспериментально апробирован новый электрофизический эффект интенсивного «холодного» испарения и диссоциации жидкостей и водных растворов в топливные газы вообще без затрат электроэнергии- высоковольтный капиллярный электроосмос. Приведены яркие примеры проявления данного важного эффекта в Живой Природе. Открытый эффект является физической основой многих новых «прорывных» технологий в водородной энергетике и промышленной электрохимии. На его основе автором разработана, запатентована и активно исследуется новая высокопроизводительная и энергетически малозатратная технология получения горючих топливных газов и водорода из воды, различных водных растворов и водо-органических соединений. В статье раскрывается их физическая сущность, и техника реализации на практике, дана технико-экономическая оценка перспективности новых газогенераторов. В статье приведен также анализ основных проблем водородной энергетики и ее отдельных технологий.

Кратко об истории открытия капиллярного электроосмоса и диссоциации жидкостей в газы и о становлении новой технологии Открытие эффекта осуществлено мною в 1985 г. Опыты и эксперименты по капиллярному электроосмотическому «холодному» испарению и разложению жидкостей с получением топливного газа без расхода электроэнергии проводились мною в период с 1986-96 г.г.. Впервые о естественном природном процессе «холодного» испарения воды в растениях я написал в 1988 г. статью «Растения–природные электрические насосы» /1/. О новой высокоэффективной технологии получения топливных газов из жидкостей и получения водорода из воды на основе данного эффекта я сообщил в 1997 г в своей статье "Новая электроогневая технология" (раздел «Можно ли сжечь воду») /2/. Статья снабжена многочисленными иллюстрациями (рис.1-4) с графиками, блок-схемами экспериментальных установок, раскрывающих основные элементы конструкций и электрических сервисных устройств(источников электрического поля) предложенных мною капиллярных электроосмотических генераторов топливного газа. Устройства представляют собою оригинальные преобразователи жидкостей в топливные газы. Изображены на рис.1-3 упрощенно, с детализацией, достаточной для пояснения сущности новой технологии получения топливного газа из жидкостей.


Перечень иллюстраций и краткие пояснения к ним приведены ниже. На рис. 1 показана простейшая экспериментальная установка «холодной» газификации и диссоциации жидкостей с переводом их в топливный газ посредством одного электрического поля. На рис.2 показана простейшая экспериментальная установка «холодной» газификации и диссоциации жидкостей с двумя источниками электрического поля (знакопостоянного электрического поля -для «холодного» испарения электроосмосом любой жидкости и второго импульсного(переменного) поля для дробления молекул испаренной жидкости и превращения ее в топливный газ. На рис. 3 упрощенно показанf блок-схема комбинированного устройства, которое в отличие от устройств(рис.1,2), обеспечивает еще и дополнительную электроактивацию испаряемой жидкости. На рис.4 приведены некоторые графики зависимости выходных полезных параметров (производительности) электроосмотического насоса- испарителя жидкостей (генератора горючего газа) от основных параметров устройств. На нем, в частности, показаны взаимосвязь производительности устройства от напряженности электрического поля и от площади капиллярной испаряемой поверхности. Названия рисунков и расшифровка элементов самих устройств дана в подрисуночных надписях к ним. Описание взаимосвязей элементов устройств и самой работы устройств в динамике даны ниже по тексту в соответствующих разделах статьи.

ПЕРСПЕКТИВЫ И ПРОБЛЕМЫ ВОДОРОДНОЙ ЭНЕРГЕТИКИ

Эффективное получение водорода из воды- заманчивая давняя мечта цивилизации. Потому что воды на планете много, а водородная энергетика сулит человечеству «чистую» энергию из воды в неограниченных количествах. Тем более, что сам процесс сжигания водорода в среде кислорода, полученных из воды, обеспечивает идеальное по калорийности и чистоте горение.

Поэтому создание и промышленное освоение высокоэффективной технологии электролиза расщепления воды на Н2 и О2 является уже давно одной из актуальных и приоритетных задач энергетики, экологии и транспорта. Еще более насущная и актуальная проблема энергетики состоит в газификации твердых и жидких углеводородных топлив, конкретнее в создании и внедрении энергетически малозатратных технологий получения горючих топливных газов из любых углеводородов, включая органические отходы. Тем не менее, несмотря на актуальность и простроту энергетической и экологической проблем цивилизации, они пока еще эффективно так и не решены. Так в чем же причины высоких энергозатрат и малой производительности известных технологий водородной энергетики ? Об этом ниже.

КРАТКИЙ СРАВНИТЕЛЬНЫЙ АНАЛИЗ СОСТОЯНИЯ И РАЗВИТИЯ ВОДОРОДНОЙ ТОПЛИВНОЙ ЭНЕРГЕТИКИ

Приоритет изобретения по получению водорода из воды путем электролиза воды принадлежит русскому ученому Лачинову Д.А.(1888г.). Мною просмотрены сотни статей и патентов и по данному научно-техническому направлению. Известны различные методы получения водорода при разложения воды: термический, электролитический, каталитический, термохимический, термогравитационный, электроимпульсный и прочие /3-12/. С позиции энергозатрат наиболее энергоемкий– термический способ /3/, а наименее энергоемкий– электроимпульсный метод американца Стэнли Мэйера /6/. Технология Мэйера /6/ основана на дискретном электролизном способе разложения воды высоковольтными электрическими импульсами на резонансных частотах колебаний молекул воды (электрическая ячейка Мэйера). Она наиболее, на мой взгляд, прогрессивна и перспективна и по применяемым физическим эффектам, и по энергозатратам, однако ее производительность пока мала и сдерживается необходимостью преодоления межмолекулярных связей жидкости и отсутствием механизма удаления генерируемого топливного газа. из рабочей зоны электролиза жидкости.

Вывод: Все эти и иные известные методы и устройства производства водорода и иных топливных газов пока еще малопроизводительны из-за отсутствия действительно высокоэффективной технологии испарения и расщепления молекул жидкостей. Об этом ниже в следующем разделе.



АНАЛИЗПРИЧИН ВЫСОКОЙ ЭНЕРГОЕМКОСТИ И НИЗКОЙ ПРОИЗВОДИТЕЛЬНОСТИ ИЗВЕСТНЫХ ТЕХНОЛОГИЙ ПОЛУЧЕНИЯ ТОПЛИВНЫХ ГАЗОВ ИЗ ВОДЫ

Получение топливных газов из жидкостей при минимальных энергозатратах– весьма непростая научно-техническая задача Существенные энергозатраты при получении топливного газа из воды в известных технологиях тратятся на преодоление межмолекулярных связей воды в ее жидком агрегатном состоянии. Потому что вода- весьма сложна по структуре и составу. Причем парадоксально то, что, несмотря на ее удивительную распространенность в природе, структура и свойства воды и ее соединений во многом еще не изучены /14/.

Cостав и скрытая энергия межмолекулярных связей структур и соединений в жидкостях.

Физико-химический состав даже обычной водопроводной воды достаточно сложен, поскольку в воде присутствуют многочисленные межмолекулярные связи, цепочки и иные структуры молекул воды. В частности, в обычной водопроводной воде имеются различные цепочки особо соединенных и ориентированных молекул воды с ионами примесей (кластерные образования), различные ее коллоидные соединения и изотопы, минеральные вещества, а также многие растворенные газы и примеси /14/.

Oбъяснение проблем и энергозатрат на "горячее" испарение воды известными технологиями.

Именно поэтому в известных способах расщепления воды на водород и кислород необходимо тратить много электроэнергии для ослабления и полного разрыва межмолекулярных, а затем и молекулярных связей воды. Для снижения энергетических затрат на электрохимическое разложение воды часто используют дополнительный термический нагрев (вплоть до образования пара), а также- введение дополнительных электролитов, например, слабых растворов щелочей, кислот. Однако данные известные усовершенствования не позволяют до сих пор существенно интенсифицировать процесс диссоциации жидкостей (в частности разложения воды) из ее жидкого агрегатного состояния. Применение известных технологий термического испарения сопряжено с огромным расходованием тепловой энергии. Да и применение в процессе получения водорода из водных растворов дорогостоящих катализаторов для интенсификации данного процесса весьма дорого и малоэффективно. Главная причина высоких энергозатрат при использовании традиционных технологий диссоциации жидкостей теперь ясна, они расходуются на разрыв межмолекулярных связей жидкостей.

Kритика самой прогрессивной электротехнологии получения водорода из воды С. Мэйера /6/

Безусловно, самая экономичная из известных и наиболее прогрессивная по физике работы это электроводородная технология Стенли Мэйера. Но и его знаменитая электрическая ячейка /6/ также малопроизводительна, потому что все таки в ней нет механизма эффективного отвода молекул газа с электродов. Кроме того, этот процесс диссоциации воды в методе Мэйера замедлен из-за того, что при электростатическом отрыве молекул воды из самой жидкости приходится тратить время и энергию на преодоление огромной скрытой потенциальной энергии межмолекулярных связей и структур воды и прочих жидкостей.

РЕЗЮМЕ ПО АНАЛИЗУ

Поэтому достаточно ясно, что без нового оригинального подхода к проблеме диссоциации и превращения жидкостей в топливные газы эту проблему интенсификации газообразования ученым и технологам не решить. Реальное внедрение прочих известных технологий в практику до сих пор «буксует», поскольку все они намного более энергозатратны, чем технология Мэйера. И поэтому малоэффективны на практике.

КРАТКАЯ ФОРМУЛИРОВКА ЦЕНТРАЛЬНОЙ ПРОБЛЕМЫ ВОДОРОДНОЙ ЭНЕРГЕТИКИ

Центральная научно- техническая проблема водородной энергетики состоит, на мой взгляд, именно в неразрешенности и необходимости поиска и осуществления на практике новой технологии для многократного интенсификации процесса получения водорода и топливного газа из любых водных растворов и эмульсий при резком одновременном снижении энергозатрат. Резкая интенсификация процессов расщепления жидкостей при снижении энергозатрат в известных технологиях пока невозможно в принципе, поскольку до недавнего времени не была решена главная проблема эффективного испарения водных растворов без подвода тепловой и электрической энергии. Магистральный путь совершенствования водородных технологий ясен. Необходимо научиться эффективно испарять и газифицировать жидкости. Причем как можно интенсивнее и с наименьшими энергозатратами.

МЕТОДОЛОГИЯ И ОСОБЕННОСТИ РЕАЛИЗАЦИИ НОВОЙ ТЕХНОЛОГИИ

Почему пар лучше льда для получения водорода из воды? Потому что в нем намного свободнее движутся молекулы воды, чем в водых растоворов.

а) Изменение агрегатного состояния жидкостей.

Очевидно, что межмолекулярные связи водяного пара слабее, чем у воды в виде жидкости, и тем более воды в виде льда. Газообразное состояние воды еще более облегчает работу электрического поля по последующему расщеплению самих молекул воды на Н2 и О2. Поэтому методы эффективного перевода агрегатного состояния воды в водяной газ (пар, туман)- это перспективный магистральный путь развития электроводородной энергетики. Потому что путем перевода жидкой фазы воды в газообразную фазу достигают ослабление и(или) полный разрыв и межмолекулярные кластерных и прочих связей и структур, существующих внутри жидкости воды.

б) Электрический кипятильник воды- анахронизм водородной энергетики или вновь о парадоксах энергетики при испарении жидкостей.

Но не все так просто. C переводом воды в газообразное состояние. А как же быть с требуемой энергией, необходимой на испарение воды. Классический способ ее интенсивного испарения– это термический нагрев воды. Но он же весьма энергозатратен. Со школьной парты нас учили, что на процесс испарения воды, и даже ее кипячения требуется весьма значительное количество тепловой энергии. Информация о необходимом количестве энергии для испарения 1м³ воды есть в любом физическом справочнике. Это многие килоджоули тепловой энергии. Или многие киловатт-часы электроэнергии, если испарение проводить нагревом воды от электрического тока. Где же выход из энергетического тупика?

КАПИЛЯРНЫЙ ЭЛЕКТРООСМОС ВОДЫ И ВОДНЫХ РАСТВОРОВ ДЛЯ «ХОЛОДНОГО ИСПАРЕНИЯ» И ДИССОЦИАЦИИ ЖИДКОСТЕЙ В ТОПЛИВНЫЕ ГАЗЫ (описание нового эффекта, и его проявление в Природе)

Я долго искал такие новые физические эффекты и малозатратные способы испарения и диссоциации жидкостей, много экспериментировал и все же нашел способ эффективного «холодного» испарения и диссоциации воды в горючий газ. Этот удивительной по красоте и совершенству эффект подсказала мне сама Природа.

Природа - наш мудрый учитель. Парадоксально, но оказывается, что в Живой природе уже давно есть, независимо от нас, эффективный способ электрокапиллярной перекачки и «холодного» испарения жидкости с переводом ее в газообразное состояние вообще без подвода тепловой энергии и электроэнергии. И этот природный эффект реализуется путем воздействия знакопостоянного электрического поля Земли на жидкость (воду), размещенную в капиллярах, именно посредством капиллярного электроосмоса.

Растения – природные, энергетически совершенные, электростатические и ионные насосы-испарители водных растворов Мои первые опыты по реализации капиллярного электроосмоса для «холодного» испарения и диссоциации воды, проделанные мною на простых экспериментальных установках еще в 1986 г. мне не сразу стали понятными, но я стал упорно искать его аналогию и проявление этого явления в Живой природе. Ведь Природа - наш вечный и мудрый Учитель. И я нашел его вначале именно в растениях!

а) Парадокс и совершенство энергетики природных насосов- испарителей растений.

Упрощенные количественные оценки показывают, что механизм работы природных насосов-испарителей влаги у растений, и особенно у высоких деревьев, уникален по своей энергетической эффективности. Действительно, уже известно, и просто подсчитать, что природный насос высокого дерева (с высотой кроны порядка 40 м. и с диаметром ствола порядка 2 м.) перекачивает и испаряет кубометры влаги в сутки. Причем вообще без подвода извне тепловой и электрической энергии. Эквивалентная энергетическая мощность такого природного электрического насоса–испарителя воды, у этого обычного дерева по аналогии с применяемыми нами аналогичными по назначению традиционными устройствами в технике, насосов и электронагревателей -испарителей воды для произведения этой же работы составляет десятки киловатт. Такое энергетическое совершенство Природы пока нам трудно даже понять и пока сразу не под силу скопировать. А растения и деревья научилась эффективно делать эту работу миллионы лет назад вообще без подвода и трат применяемой нами повсюду электроэнергии.

б) Oписание физики и энергетика природного насоса- испарителя жидкости растений.

Так как же работает природный насос– испаритель воды у деревьев и растений и каков механизм его энергетики? Оказывается, что все растения давно и искусно используют этот открытый мною эффект капиллярного электроосмоса в качестве энергетического механизма перекачки питающих их водных растворов своими природными ионными и электростатическими капиллярными насосами для подачи воды от корней к их кроне вообще без подвода энергии и без участия человека. Природа мудро использует потенциальную энергию электрического поля Земли. Причем в растениях и деревьях для подъема жидкости от корней к листьям внутри стволов растений и холодного испарения соков по капиллярам внутри растений используются природные тончайшие волокна-капилляры растительного происхождения, природный водный раствор- слабый электролит, естественный электрический потенциал планеты и потенциальная энергия электрического поля планеты. Одновременно с ростом растения (увеличением его высоты) возрастает и производительность этого природного насоса, потому что повышается разность природных электрических потенциалов между корнем и верхушкой кроны растения.


следующая страница >>