microbik.ru
1
. Основные законы и понятия химии. Закон Авогадро: в равных объемах V различных газов при одина¬ковых условиях (температуре Т и давлении Р) содержится одинаковое число молекул. Следствия из закона Авогадро. Следствие 1. Одинаковое число молекул различных газов при одинаковых условиях (Р, T) занимает одинаковый объем. Поскольку 1 моль любого вещества содержит одинаковое число структурных единиц (NA = 6,02 • 1023 моль-1), то 1 моль любого газа при нормальных условиях занимает одинаковый объем, равный 22,4 л/моль. Эта величина называется молярным объемом Vm: молярный объем=объем газа при н.у.(V)/химическое кол-во в-ва(n). Следствие 2. Относительная плотность одного газа X по другому Y равна отношению их молярных масс М при заданных давлении и тем¬пературе. Объединенный газовый закон: для данной массы газа произведе¬ние давления на объем, деленное на абсолютную температуру, есть величина постоянная. Уравнение Менделеева - Клапейрона: для 1 моля любого газа величина (Р *V)/ Т -нулевые одинакова и называется универсальной газовой постоянной R. Для п молей газа: P*V = n*R*T=m/M(R*T.) Числовые значения универсальной газовой постоянной R зависят от выбора единиц измерения параметров Р, Т, V. В Международной системе единиц R = 8,314 Дж/(моль *К). Эквивалент - реальная или условная частица вещества, которая в данной кислотно-основной реакции равноценна (эквивалентна) од¬ному иону водорода или в данной окислительно-восстановительной реакции - одному электрону. Фактор эквивалентности - это число, обозначающее, какая до¬ля реальной частицы вещества эквивалентна одному иону водорода в данной кислотно-основной реакции или одному электрону в данной окислительно-восстановительной реакции. Фактор эквивалентности Fэкв=1/z может равняться единице или быть меньше ее. M(1/z оксида)= М (оксида)/( степень окисления элемента *число его атомов).M(1/z кислоты)= М(кислоты)/ число ионов Н+, способных замещаться на металл. M(1/z основаниия)= М(основания)/ число гидроксогрупп ОН. M(1/z соли)=М(соли)/ (степень окисления* число его атомов).m(1/z H3PO4)=1/3 * (H3PO4)

Оксиды, типы оксидовОксидами называются бинарные соединения, в которых один из элементов - кислород со степенью окисления -2. Основные оксиды - это оксиды металлов со степенью окисления металла +1, +2. Исключение составляют оксиды BeO, ZnO, SnO, PbO, являющиеся амфотерными. Основным оксидам отвечают гидроксиды -основания. НапримерОсновной оксид Калий два О Основание Калий О АШ(КОН)Амфотерные оксиды - оксиды металлов со степенью окисления металла +3, +4 и BeO, ZnO, SnO, PbO со степенью окисления +2.Амфотерным оксидам отвечают гидроксиды, проявляющие как свойства кислот, так и свойства оснований. Например:Амфотерный оксид ZnO Основание Zn(OH)2 Кислота H2ZnO2Кислотные оксиды - оксиды неметаллов с любой степенью окис-ления и оксиды металлов с высокими степенями окисления (выше +4). Кислотным оксидам отвечают гидроксиды - кислоты. Например:Кислотный оксид +4 SO2 Кислота +4 H2SO3Основаниями называются вещества, образующие при диссоциа¬ции анионы одного вида, анионы гидроксила (ОН). Основания делятся:- на хорошо растворимые в воде щелочи (гидроксиды щелочных и щелочно-земельных металлов: NaOH, Ва(ОН)2 и др.) и малорастворимые в воде основания (Fe(OH)2, Си(ОН)2 и др.);- однокислотные (LiOH, NH4OH) и многокислотные (Mg(OH)2, Sc(OH)3).Кислотность оснований определяют по числу гидроксогрупп, связанных с металлом.Основные способы получения оксидов Пролучение оксидов производят различными способами. Это может происходить физическим и химическим способами. Самым простым способом является химическое взаимодействие простых элементов с кислородом. Например, результатом процесса горения или одним из продуктов этой химической реакции являются оксиды. Например, если раскалённое железный прутик, да и не толко железный (можно взять цинк Zn, олово Sn, сивнец Pb, медь Cu, - вообщем то, что имеется под рукой) поместить в колбу с кислородом, то произойдёт химическая реакция окисления железа, которая сопровождается яркой вспышкой и искрами. Продуктом реакции будет чёрный порошок оксида железа FeO:2Fe+O2=2FeOПолностью аналогичны химические реакции с другими металлами и неметаллами, Например: Цинк сгорает в кислороде с образованием окисла цинка 2Zn+O2=2ZnO

Теории кислот и оснований — совокупность фундаментальных физико-химических представлений, описывающих природу и свойства кислот и оснований. Все они вводят определения кислот и оснований -- двух классов веществ, реагирующих между собой. Задача теории -- предсказание продуктов реакции между кислотой и основанием и возможности её протекания, для чего используются количественные характеристики силы кислоты и основания. Различия между теориями лежат в определениями кислот и оснований, характеристики их силы и, как следствие -- в правилах предсказания продуктов реакции между ними. Все они имеют свою область применимости, каковые области частично пересекаются.Кислотно-основные взаимодействия чрезвычайно распространенены в природе и находят широкое применение в научной и производственной практике. Теоретические представления о кислотах и основаниях имеют важное значение в формировании всех концептуальных систем химии и оказывают разностороннее влияние на развитие многих теоретических концепций во всех основных химических дисциплинах.На основе современной теории кислот и оснований разработаны такие разделы химических наук, как химия водных и неводных растворов электролитов, рН-метрия в неводных средах, гомо- и гетерогенный кислотно-основный катализ, теория функций кислотности и многие другие.

Кисло́ты — сложные вещества, в состав которых обычно входят атомы водорода, способные замещаться на атомы металлов, и кислотный остаток. Водные растворы кислот имеют кислый вкус, обладают раздражающим действием, способны менять окраску индикаторов, отличаются рядом общих химических свойств.Классификация кислотПо содержанию кислорода бескислородные (HCl, H2S);кислородосодержащие (HNO3,H2SO4).По основности — количество кислых атомов водорода Одноосновные (HNO3);Двухосновные (H2SeO4, двухосновные предельные карбоновые кислоты);Трёхосновные (H3PO4, H3BO3).Полиосновные (практически не встречаются).По силе Сильные — диссоциируют практически полностью, константы диссоциации больше 1×10−3 (HNO3);Слабые — константа диссоциации меньше 1×10−3 (уксусная кислота Kд= 1,7×10−5).По устойчивости Устойчивые (H2SO4);Неустойчивые (H2CO3).По принадлежности к классам химических соединений Неорганические (HBr);органические (HCOOH,CH3COOH);По летучести Летучие (H2S, HCl);Нелетучие (H2SO4) ;

Со́ли — класс химических соединений, к которому относятся вещества, состоящие из катионов металла (или катионов аммония ; известны соли фосфония или гидроксония ) и анионов кислотного остатка.Средние (нормальные) соли — все атомы водорода в молекулах кислоты замещены на атомы металла. Пример: , .Na2CO3Кислые соли — атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Осно́вные соли — гидроксогруппы основания (OH−) частично замещены кислотными остатками (cuoH)2CO3Двойные соли — в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами.Смешанные соли — в их составе присутствует два различных аниона.Гидратные соли (кристаллогидраты) — в их состав входят молекулы кристаллизационной воды.Комплексные соли — в их состав входит комплексный катион или комплексный анион.

Квантово-механическая модель атомаСовременная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется электрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).Массу атома принято измерять в атомных единицах массы, равных 1⁄12 от массы атома стабильного изотопа углерода 12C.

Атомная орбиталь — одноэлектронная волновая функция в сферически симметричном электрическом поле атомного ядра, задающаяся главным n, орбитальным l и магнитным m квантовыми числами.Название «орбиталь» (а не орбита) отражает геометрическое представление о стационарных состояниях электрона в атоме; такое особое название отражает тот факт, что состояния электрона в атоме описывается законами квантовой механики и отличается от классического движения по траектории. Совокупность атомных орбиталей с одинаковым значением главного квантового числа n составляют одну электронную оболочку.На каждой орбитали может быть не более двух электронов, отличающихся значением спинового квантового числа s (спина). Этот запрет определён принципом Паули. Порядок заполнения электронами орбиталей одного уровня (орбиталей с одинаковым значением главного квантового числа n) определяется правилом Клечковского, порядок заполнения электронами орбиталей в пределах одного подуровня (орбиталей с одинаковыми значениями главного квантового числа n и орбитального квантового числа l) определяется Правилом Хунда.Периодический закон — фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс.

Химическая связь — взаимное притяжение атомов, приводящее к образованию молекул и кристаллов. Принято говорить, что в молекуле или в кристалле между соседними атомами существуют химические связи. Валентность атома (о чём подробнее сказано ниже) показывает число связей, образуемых данным атомом с соседними атомами [см. также Валентность]. Э. Франкленд в 1852 предложил концепцию, согласно которой каждый элемент образует соединения, связываясь с определённым числом эквивалентов др. элементов, при этом один эквивалент соответствует количеству,

Типы химической связиМеталлическая связь — химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений.Ковалентная связь (атомная связь, гомеополярная связь) — химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой.Характерные свойства ковалентной связи — направленность, насыщаемость, полярность, поляризуемость — определяют химические и физические свойства соединений.Ионная связь — прочная химическая связь, образующаяся между атомами с большой разностью (>1,7 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Ван-дер-ваальсовы силы — силы межмолекулярного взаимодействия с энергией 0,8 — 8,16 кДж/моль. Этим термином первоначально обозначались все такие силы, в современной науке он обычно применяется к силам, возникающим при поляризации молекул и образовании диполей. Открыты Я. Д. ван дер Ваальсом в 1869 году.Водородная связь — форма ассоциации между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.[1]Двухэлектронная трёхцентровая связь — одна из возможных электроно-дефицитных связей. Характерна тем, что пара валентных электронов локализована в пространстве сразу трёх атомов (отсюда и понятие «электроно-дефицитности» — «нормальным» случаем является двухэлектронная двухцентровая связь). Общее описание механизма образования электронодефицитных связей даётся в рамках теории молекулярных орбиталей (модель «несвязывающих» орбиталей).

Теория валентных связей (метод валентных связей, метод валентных схем, метод локализованных электронных пар) — приближённый квантовохимический расчётный метод, основанный на представлении о том, что каждая пара атомов в молекуле удерживается вместе при помощи одной или нескольких общих электронных пар .Гибридизация-Представление о гибридизации атомных орбиталей занимают центральное место в теории валентных связей. Концепция гибридизации атомных орбиталей была предложена в 1931 году Л.Полингом для объяснения тетраэдрического строения соединений насыщенного атома углерода. По Полингу, смешанные, или гибридные орбитали углерода можно рассчитать с помощью простых алгебраических действий. Для этого важно учесть зависимость электронных s- и p- орбиталей от направления их в пространстве и сложить их так, чтобы гибридные орбитали приняли максимально вытянутую конфигурацию. В тех местах, где гибридные орбитали наиболее вытянутые, как раз и образуются химические связи между атомами. И связи эти направлены от ядра в углы правильного тетраэдра

Термодинамические системы:Изолированная система (замкнутая cистема) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией. В термодинамике постулируется (как результат обобщения опыта), что изолированная система постепенно приходит в состояние термодинамического равновесия, из которого самопроизвольно выйти не может (нулевое начало термодинамики).Закры́тая систе́ма — термодинамическая система, которая может обмениваться с окружающей средой теплом и энергией, но не веществом, в отличие от изолированной системы, которая не может обмениваться с окружающей средой ничем, и открытой системы, которая обменивается с другими телами как теплом и энергией, так и веществом.

Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Энтальпи́я, также тепловая функция и теплосодержание — термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц.Проще говоря, энтальпия - это та энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении.

Энтропи́я (от др.-греч. ἐντροπία «поворот», «превращение») в естественных науках — мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике — мера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса).

Изобарный процесс (др.-греч. ἴσος «одинаковый» и βάρος «тяжесть») — термодинамический процесс, происходящий в системе при постоянном давлении и массе идеального газа.Согласно закону Гей-Люссака, при изобарном процессе в идеальном газе v/t=const

Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

Второе начало термодинамики — физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю.

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

стандартная теплота образованияПод стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях.Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

Закон Гесса — основной закон термохимии, который формулируется следующим образом:Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.

Скорость реакции и факторы,Наличие донорных заместителей в диене облегчает протекание реакции.Обычно реакция протекает с высокими выходами, её скорость снижается с увеличением количества и объёма заместителей.Обычно реакция протекает при комнатной температуре либо при нагревании до 100—120 °CРеакция обратима, при сильном нагревании цикл способен распадаться на исходные молекулы (ретро-Дильса-Альдера реакция). Зачастую подобная ситуация наблюдается и при ЯМР исследованиях.

Энергия активации в химии — минимальное количество энергии, которое требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Термин введён Сванте Августом Аррениусом в 1889. Типичное обозначение энергии реакции Ea.В химической модели, известной как Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.Молекулы должны обладать необходимой энергией (энергией активации). В процессе химической реакции взаимодействующие молекулы должны пройти через промежуточное состояние, которое может обладать большей энергией. То есть молекулы должны преодолеть энергетический барьер; если этого не произойдёт, реакция не начнётся.Молекулы должны быть правильно ориентированы относительно друг друга.

Обратимые реакции — химические реакции, протекающие одновременно в двух противоположных направлениях (прямом и обратном), например:3H2 + N2 =2NH3.Необратимые реакции — реакции, при которых взятые вещества нацело превращаются в продукты реакции, не реагирующие между собой при данных условиях, например, разложение взрывчатых веществ, горение углеводородов, образование малодиссоциирующих соединений, выпадение осадка, образование газообразных веществ.

Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворённого вещества, растворителя и продуктов их взаимодействия.Раствор — однофазная система переменного состава, состоящая из двух или более компонентов. Растворы — гомогенные (однородные) системы, то есть каждый из компонентов распределён в массе другого в виде молекул, атомов или ионов[1].Идеальным раствором называют раствор, для которого выполняется первый закон Рауля.Идеальными при любых концентрациях являются растворы, компоненты которых близки по физическим и химическим свойствам и образование которых не сопровождается объёмными и тепловыми эффектами. В этом случае силы межмолекулярного взаимодействия между однородными и разнородными частицами примерно одинаковы, и образование раствора обусловлено лишь энтропийным фактором.

Осмотическое давление (обозначается π) — избыточное гидростатическое давление на раствор, отделённый от чистого растворителя полупроницаемой мембраной, при котором прекращается диффузия растворителя через мембрану. Это давление стремится уравнять концентрации обоих растворов вследствие встречной диффузии молекул растворённого вещества и растворителя.Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим, имеющий более низкое — гипотоническим.

Зако́ны Ра́уля — общее название открытых французским химиком Ф. М. Раулем в 1887 г. количественных закономерностей, описывающих некоторые коллигативные (зависящие от концентрации, но не от природы растворённого вещества) свойства растворовервый закон Рауля связывает давление насыщенного пара над раствором с его составом; он формулируется следующим образом:Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причём коэффициент пропорциональности равен давлению насыщенного пара над чистым компоненто

Растворы электролитов Электролиты - вещества, проводящие в расплавах или водных растворах электрический ток. В расплавах или водных растворах они диссоциируют на ионы. Неэлектролиты - вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. Электролиты при растворении в подходящих растворителях (вода, другие полярные растворители) диссоциируют на ионы. Сильное физико-химическое взаимодействие при растворении приводит к сильному изменению свойств раствора (химическая теория растворов).Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.

Теория электролитической диссоциации Аррениуса-Оствальда Определения. Кислоты — это вещества, образующие в водном растворе ионы гидратированные катионы водорода Н+ (ионы гидроксония) и анионы кислотного остатка.Основания -- вещества, диссоциирующие в водном растворе с образованием катионов металла и гидроксид-анионов ОН−.Соли -- вещества, диссоциирующие с образованием катиона металла и аниона кислотного остатка.Продукты реакции. В реакции кислоты с основанием (реакция нейтрализации образуется соль и соли и воды.Примеры. Кислота -- HCl (кислотный остаток Cl-):HCl + H2O ↔ H3O+ + Cl-Основание -- NaOH:NaOH ↔ Na+ + OH-Реакция нейтрализации (соль - NaCl):HCl + NaOH = NaCl + H2O

Степень диссоциации величина, характеризующая состояние равновесия в реакции диссоциации в гомогенных (однородных) системах.Степень диссоциации равна отношению числа диссоциированных молекул n к сумме n + N, где N — число недиссоциированных молекул. Часто α выражают в процентах. Степень диссоциации зависит как от природы растворённого электролита, так и от концентрации раствора.

Буферные растворы — растворы с определённой устойчивой концентрацией водородных ионов; смесь слабой кислоты и её соли (напр., СН3СООН и CH3COONa) или слабого основания и его соли (напр., NH3 и NH4CI). Величина рН буферного раствора мало изменяется при добавлении небольших количеств свободной сильной кислоты или щёлочи, при разбавлении или концентрировании. Буферные растворы широко используют в различных химических исследованиях.Буферные растворы имеют большое значение для протекания процессов в живых организмах. Например, в крови постоянство водородного показателя рН поддерживается буферными смесями, состоящими из карбонатов и фосфатов. Известно большое число буферных растворов (ацетатно-аммиачный буферный раствор, фосфатный буферный раствор, боратный буферный раствор, формиатный буферный раствор и др.).

Гидролиз солей — разновидность реакций гидролиза, обусловленного протеканием реакций ионного обмена в растворах (преимущественно, водных) растворимых солей-электролитов. Движущей силой процесса является взаимодействие ионов с водой, приводящее к образованию слабого электролита в ионном или (реже) молекулярном виде («связывание ионов»).Различают обратимый и необратимый гидролиз солей[1]Степень гидролиза:Под степенью гидролиза подразумевается отношение части соли, подвергающейся гидролизу, к общей концентрации её ионов в растворе. Обозначается α (или hгидр);α = (cгидр/cобщ)·100 где cгидр — число молей гидролизованной соли, cобщ — общее число молей растворённой соли.Степень гидролиза соли тем выше, чем слабее кислота или основание, её образующие.

Химическим уравнением-называют условную запись химической реакции с помощью химических формул, числовых коэффициентов и математических символов.Хими́ческий исто́чник то́ка (аббр. ХИТ) — источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию.

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.Закон Фарадея-В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Корро́зия-то самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это разрушение любого материала, будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде.Электрохимическая коррозияРазрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т. п. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды — либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.Химическая коррозия — взаимодействие поверхности металла с коррозионно-активной средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:4Fe + 3O2 → 2Fe2O3

Комплексные соединения— частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами. Теория комплексных соединений (координационная теория) была предложена в 1893 г. А. Вернером.Катионные комплексы образованы в результате координации вокруг положительного иона нейтральных молекул. Анионные комплексы: в роли комплексообразователя выступает атом с положительной степенью окисления, а лигандами являются простые или сложные анионы.Нейтральные комплексы образуются при координации молекул вокруг нейтрального атома, а так же при одновременной координации вокруг положительного иона — комплексообразователя отрицательных ионов и молекул.

Диспе́рсная систе́ма — это образованная из двух или более фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т. д.).Обычно дисперсные системы — это коллоидные растворы, золи. К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.

Жёсткость воды — совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»).Методы устраненияТермоумягчение. Основан на кипячении воды, в результате термически нестойкие гидрокарбонаты кальция и магния разлагаются с образованием накипи:Ca(HCO3)2 → CaCO3↓ + CO2 + H2O..Кипячение устраняет только временную (карбонатную) жёсткость. Находит применение в быту.Лучшим реагентом для устранения общей жесткости воды является ортофосфат натрия Na3PO4, входящий в состав большинства препаратов бытового и промышленного назначения

d-блок в периодической таблице элементов — электронная оболочка атомов, валентные электроны которых с наивысшей энергией занимают d-орбиталь.Данный блок представляет собой часть периодической таблицы; в него входят элементы от 3 до 12 группы[1][2]. Элементы данного блока заполняют d-оболочку d-электронами, которая у элементов начинается s2d1 (третья группа) и заканчивается s2d10 (двенадцатая группа). Однако существуют некоторые нарушения в этой последовательности, например, у хрома s1d5 (но не s2d4) вся одиннадцатая группа имеет конфигурацию s1d10 (но не s2d9). Одиннадцатая группа имеет заполненные s- и d-электроны

f-блок в периодической таблице элементов — электронная оболочка атомов, валентные электроны которых с наивысшей энергией занимают f-орбиталь.В данный блок входят актиноиды и лантаноиды.Фактическая электронная конфигурация элементов, входящих в этот блок, может отличаться от истинной и не может не подпадать под определение правила Клечковского. Данный блок делится на две группы:Элементы, у которых электроны находятся на 4f-орбитали, относятся к лантаноидам,Элементы, у которых электроны находятся на 5f-орбитали, относятся к актиноидам.

Классификация органических соединений-В основе классификации лежит структура органических соединений. Основа описания структуры — структурная формула. Атомы элементов обозначаются латинскими символами, как они обозначены в периодической таблице химических элементов (таблице Менделеева). Водородные и электронодефицитные связи обозначаются пунктирной линией, ионные связи обозначаются указанием зарядов частиц, входящих в состав молекулы. Поскольку в подавляющее большинство органических молекул входит водород, его обычно не обозначают при изображении структуры. Таким образом, если в структуре у одного из атомов изображена недостаточная валентность, значит, возле этого атома расположен один или несколько атомов водорода.Атомы могут образовывать циклические и ароматические системы.

методы получения полимеров

Полимеризация и поликонденсацияСинтетические полимеры получают в результате реакций полимеризации и поликонденсации.Полимеризация — это процесс соединения друг с другом большого числа молекул мономера за счет кратных связей (С = С, С = О и др.) или раскрытия циклов, содержащих гетероатомы (О, N, S). При полимеризации обычно не происходит образования низкомолекулярных побочных продуктов, вследствие чего полимер и мономер имеют один и тот же элементный состав,Поликонденсация — зто процесс соединения друг с другом молекул одного или нескольких мономеров, содержащих две и да более функциональные группы (ОН, СО, СОС, NHS и др.) способные к химическому взаимодействию, при котором происходит отщепление низкомолекулярных продуктов. Полимеры, получаемые поликонденсационным способом, по элементному составу не соответствуют исходным мономерам.