microbik.ru
1 2 ... 17 18
КОМПЛЕКСНАЯ МЕТОДИКА

ПО ОБСЛЕДОВАНИЮ И ЭНЕРГОАУДИТУ РЕКОНСТРУИРУЕМЫХ ЗДАНИЙ
ПОСОБИЕ ПО ПРОЕКТИРОВАНИЮ
МДС 13-20.2004
Рецензент - зав. кафедрой строительных конструкций Московского института коммунального хозяйства и строительства, д-р техн. наук, проф. Ю.Н. Хромец.

В работе изложены основные приемы и способы натурных обследований состояния эксплуатационной среды помещений. Подробно рассматриваются методы обследования железобетонных, металлических и деревянных конструкций, а также особенности обследований основных видов ограждающих конструкций (стен, покрытий и кровель, полов и т.д.). Описаны методы и средства измерений деформаций конструкций и наблюдения за трещинами. Даны методы теплотехнических исследований ограждающих конструкций. Указаны приборы и оборудование для определения физико-технических характеристик материалов.

Особое внимание в работе уделено методическим указаниям проведения энергоаудита зданий - выявлению теплотехнических характеристик ограждающих конструкций и обследованию инженерных систем зданий и технико-экономическому сравнению их эффективности. Проведение таких работ позволит выбрать оптимальное решение при реконструкции зданий с наименьшими энергозатратами при их дальнейшей эксплуатации.

Одним из важных моментов методики является новый раздел - обследование пожарной безопасности здания. В нем приведены основные положения обследования, целью которых является оценка выполнения требований противопожарной защиты зданий при их реконструкции. Рекомендован состав работ, необходимых как при оценке состояния конструкций и качества выполнения строительных противопожарных мероприятий, так и при оценке состояния инженерных систем и автоматических средств сигнализации и пожаротушения.

Приложения содержат большой перечень средств измерения при натурных обследованиях, нормативных и инструктивных материалов.

Данная Комплексная методика предназначена для специалистов проектно-изыскательских организаций, ее использование позволит усовершенствовать работу этих специалистов и повысить качество получаемых результатов натурных обследований.
ВВЕДЕНИЕ
В настоящее время имеется большое количество методик по инженерному обследованию зданий различного назначения, выпущенных различными организациями.

Несмотря на такое многообразие, все они имеют одно общее свойство - в них, как правило, рассматриваются только вопросы натурных обследований строительных конструкций зданий. Это связано с тем, что в период 70 - 90-х годов прошлого столетия заказчиками таких работ являлись различные производственные предприятия и задачей натурных обследований являлось, в основном, определение состояния несущих и ограждающих конструкций зданий. Результатами таких работ пользовались, как правило, эксплуатационные службы для проведения ликвидации аварийного состояния строительных конструкций.

В последние годы значительно вырос объем реконструкции и технического перевооружения предприятий, зданий и сооружений. При этом одной из главных задач является экономия материальных и энергетических ресурсов. Одной из особенностей современных натурных обследований стало более тесное сотрудничество с технологами, проектировщиками и специалистами по инженерному оборудованию зданий, а основными заказчиками и потребителями результатов работ стали инвесторы и проектные организации. В этом случае необходимый объем сведений можно получить при проведении только комплексных обследований, охватывающих более широкий круг вопросов.

В ряде случаев реконструкция зданий связана с их перепрофилированием. При этом в существующем объеме здания размещается новое технологическое оборудование, имеющее свои особенности. В этом случае помимо работ по определению несущей способности каркаса на новые нагрузки требуется определение фактической пожарной безопасности здания. Проведение такой работы необходимо и по причине существенных изменений в нормативной базе, что требует выявления соответствия объемно-планировочных и конструктивных решений здания, а также систем пожаротушения этим новым нормам.

Реконструкция здания с его надстройкой или другими изменениями объемно-планировочных решений требует также получения сведений о существующих системах инженерного оборудования. Это оценка состояния коммуникаций, обследования тепловых и энергетических вводов в здание, выявление соответствия существующих теплоэнергетических мощностей предполагаемым изменениям здания.

Появление еще одного нового вида обследовательских работ связано с проблемой экономного расходования тепло- и энергоресурсов. При реконструкции существующего здания эта проблема решается, в основном, двумя путями.

Первый - увеличение теплотехнических свойств ограждающих конструкций, соответствующих новым, более высоким нормативным требованиям.

Второй - совершенствование систем инженерного оборудования здания.

Выбор оптимального решения реконструкции здания с наименьшими энергозатратами при его эксплуатации достигается энергоаудитом - проведением теплотехнических обследований ограждающих конструкций и инженерных систем и технико-экономическим сравнением их эффективности.

Комплексные обследования реконструируемых зданий должны включать следующие разделы:

- обследование эксплуатационной среды;

- обследование состояния несущих и ограждающих конструкций;

- обследование систем инженерного оборудования и проведение энергоаудита;

- оценку противопожарной безопасности реконструируемого здания.

Исходя из такого широкого круга вопросов, решаемых при комплексном обследовании реконструируемых зданий, существенно изменяется и состав участников обследований. В этом случае группа обследователей тоже должна стать комплексной, т.е. в нее должны войти специалисты по изучению микроклимата помещений, инженеры по оценке состояния несущих и ограждающих конструкций, специалисты по обследованию систем инженерного оборудования и по противопожарной безопасности зданий.

При разработке Комплексной методики использованы материалы ряда институтов: НИИЖБа, ЦНИИСКа им. Кучеренко, ЦНИИпроектстальконструкции им. Мельникова, Харьковского НИИпроекта, ВНИИПО и других организаций.

Комплексная методика разработана под общей редакцией д-ра техн. наук, проф. В.В. Гранева, д-ром техн. наук, проф. А.Г. Гиндояном (разделы 1, 2, 3, 7), канд. техн. наук Л.Ф. Гольденгершем (раздел 5.3), канд. техн. наук В.Н. Макарцевым (разделы 1, 3, 7), канд. техн. наук Т.Е. Стороженко (раздел 6) и канд. техн. наук Е.О. Шилькротом (разделы 2, 4, 5).
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Настоящая Комплексная методика предназначена для организаций и специалистов, осуществляющих инженерные обследования эксплуатируемых и реконструируемых зданий.

1.2. Комплексные обследования включают оценку:

- производственной среды (микроклимата) помещений;

- состояния несущих и ограждающих конструкций;

- состояния инженерных систем отопления, вентиляции и кондиционирования;

- противопожарной безопасности зданий;

- теплоэнергетического состояния (энергоаудит) зданий.

1.3. Методика может быть применена как для комплексного обследования зданий, так и для обследования отдельных элементов.

1.4. Общей целью обследования технического состояния строительных конструкций является выявление несущей способности и эксплуатационных качеств конструкций, степени их физического износа и причин, обусловливающих их состояние.

1.5. Целью проведения энергоаудита является получение данных о энергоресурсах потребления здания для технико-экономического обоснования оптимального решения реконструкции здания, отвечающего современным теплотехническим требованиям.

1.6. Целью обследования противопожарной безопасности здания является выявление соответствия выполненных строительных противопожарных мероприятий и противопожарных систем инженерного оборудования действующим нормам.

1.7. В зависимости от задач, определяемых техническим заданием заказчика, инженерные обследования зданий, как правило, включают:

- предварительные обследования, включающие сбор исходной информации для составления технического задания и договора с заказчиком;

- визуальное обследование условий эксплуатации конструкций, технического состояния строительных конструкций, инженерных и противопожарных систем по внешним признакам и составление ведомости дефектов;

- оценку производственной среды (микроклимата) помещений с точки зрения ее соответствия санитарно-гигиеническим требованиям;

- инструментальное обследование эксплуатационных качеств конструкций, инженерных и противопожарных систем;

- обобщение результатов и составление отчета (заключения) по работе.

1.8. Основными задачами предварительного обследования являются определение общего состояния элементов здания или здания в целом, определение состава намечаемых работ и сбор исходных данных, необходимых для заключения договора с заказчиком.

1.9. Состав работ по предварительному обследованию включает:

- общий осмотр объекта;

- общие сведения о здании, времени строительства, сроках эксплуатации;

- общие характеристики объемно-планировочного, конструктивных решений здания, инженерных и противопожарных систем и инженерного оборудования;

- изучение материалов ранее проводившихся на объекте обследований по ремонту, усилению и восстановлению эксплуатационных качеств строительных конструкций, инженерных и противопожарных систем;

- выявление объема имеющейся проектной документации.

1.10. В состав детального инструментального обследования в зависимости от состояния зданий, а также задач, установленных техническим заданием, рекомендуется включать:

- обмерные работы по зданию;

- измерение параметров эксплуатационной среды здания;

- оценку технического состояния строительных конструкций и их элементов по их характерным и детальным признакам повреждений и дефектов;

- определение прочностных и теплотехнических характеристик материалов основных строительных конструкций;

- отбор образцов материалов строительных конструкций и их лабораторные испытания;

- фотофиксацию и составление карт повреждений и дефектов строительных конструкций;

- оформление обмерных и других графических материалов;

- анализ полученных результатов обследования и составление заключения (отчета).

1.11. В состав детального инструментального обследования инженерных и противопожарных систем зданий рекомендуется включать следующие работы:

- обмерные;

- измерение геометрических параметров инженерных систем;

- оценку технического состояния инженерных систем, составление карт повреждений и дефектов;

- анализ полученных результатов детального обследования и составление заключения (отчета).

1.12. При проведении обследований здания или его отдельных элементов с заказчиком согласовываются меры по обеспечению безопасности ведения работ (устройство подмостей и приспособлений для доступа к обследуемым конструкциям, освещения затемненных участков и т.п.), проводится инструктаж специалистов, ответственных за технику безопасности на обследуемом объекте.
2. ОБСЛЕДОВАНИЯ ЭКСПЛУАТАЦИОННОЙ СРЕДЫ ЗДАНИЙ
2.1. Обследование воздушно-теплового режима здания
2.1.1. Целью данных обследований является выявление основных факторов, определяющих эксплуатационную среду помещений.

2.1.2. Задачи натурных обследований:

- измерение параметров воздушного и теплового микроклимата в обслуживаемой (рабочей) зоне и проверка их соответствия гигиеническим и технологическим нормативам;

- измерение параметров воздушно-теплового режима (ВТР), составление воздушно-теплового баланса (ВТБ), определение энергетических затрат здания и их составляющих.

2.1.3. В зависимости от объема поставленных задач натурные обследования могут быть полными, включающими весь состав работ по всему зданию, или частичными по ряду направлений работ или на отдельных участках здания.

2.1.4. Измерение показателей микроклимата, температуры, влажности и скорости движения воздуха и результирующей температуры в помещениях жилых и общественных зданий следует проводить во время их функционирования, учитывая заполняемость помещения, работу бытовых приборов, офисной техники, наличие посетителей и т.п.

2.1.5. Измерение температуры и скорости движения воздуха следует проводить в обслуживаемой зоне на высоте:

- 0,1; 0,4 и 1,7 м от поверхности пола - для детских дошкольных учреждений;

- 0,1; 0,6 и 1,7 м от поверхности пола - при пребывании людей в помещении преимущественно в сидячем положении;

- 0,1; 1,1 и 1,7 м от поверхности пола - в помещениях, где люди преимущественно стоят или ходят;

- в центре обслуживаемой зоны и на расстоянии 0,5 м от внутренней поверхности наружных стен и стационарных отопительных приборов - в помещениях, указанных в таблице 2.1.
Таблица 2.1
Места проведения измерений


Вид зданий

Выбор помещения

Место измерения

Одноквартирные

Не менее чем в двух
комнатах площадью более
5 м2 каждая, имеющих две
наружные стены или
комнаты с большими
окнами, площадь которых
составляет 30% и более
площади наружных стен


В центре плоскостей,
отстоящих от внутренней
поверхности наружной
стены и отопительного
прибора на 0,5 м и в
центре помещения (точке
пересечения диагональных
линий помещения) на
высоте, указанной в
п. 4.3


Многоквартирные

Не менее чем в двух
комнатах площадью более
5 м2 каждая в квартирах
на первом и последнем
этажах


Гостиницы, мотели,
больницы, детские
учреждения, школы


В одной угловой комнате
1-го или последнего
этажа


Другие
общественные и
административно-
бытовые


В каждом
представительном
помещении


То же, в помещениях
площадью 100 м2 и более
измерения осуществляются
на участках, размеры
которых регламентированы
в п. 4.3



Измерение относительной влажности воздуха следует проводить в центре помещения на высоте 1,0 м от поверхности пола.

В помещениях площадью более 200 м2 измерение температуры, влажности и скорости движения воздуха следует проводить на равновеликих участках, площадь которых должна быть не более 100 м2.

2.1.6. Измерение показателей микроклимата в помещениях производственных зданий следует проводить, учитывая все факторы, влияющие на микроклимат рабочих мест (фазы технологического процесса, функционирование систем вентиляции и отопления и др.). Измерения следует проводить не менее 3 раз в смену (в начале, середине и в конце). При колебаниях показателей микроклимата, связанных с технологическими и другими причинами, необходимо проводить дополнительные измерения при наибольших и наименьших величинах термических нагрузок на работающих.

2.1.7. Время начала измерений следует выбирать не ранее чем через 2 ч после начала рабочей смены. Период измерений должен соответствовать стабильной работе технологического оборудования и систем отопления, вентиляции и кондиционирования воздуха. Особенности режима работы (технологические циклы, въезд и выезд транспорта и т.п.) производства должны фиксироваться во времени.

2.1.8. Измерения показателей микроклимата следует проводить на рабочих местах. Если рабочим местом являются несколько участков производственного помещения, то измерения осуществляются на каждом из них.

При наличии источников локального тепловыделения, охлаждения или влаговыделения (нагретых агрегатов, окон, дверных проемов, ворот, открытых ванн и т.д.) измерения следует проводить на каждом рабочем месте, минимально и максимально удаленном от источников термического воздействия.

При работах, выполняемых сидя, температуру и скорость движения воздуха следует измерять на высоте 0,1 и 1,0 м, а относительную влажность воздуха - на высоте 1,0 м от пола или рабочей площадки. При работах, выполняемых стоя, температуру и скорость движения воздуха следует измерять на высоте 0,1 и 1,5 м, а относительную влажность воздуха - на высоте 1,5 м.

При наличии источников лучистого тепла тепловое облучение на рабочем месте необходимо измерять от каждого источника, располагая приемник прибора перпендикулярно падающему потоку. Измерения следует проводить на высоте 0,5; 1,0 и 1,5 м от пола или рабочей площадки.

В помещениях с большой плотностью рабочих мест при отсутствии источников локального тепловыделения, охлаждения или влаговыделения участки измерения температуры, относительной влажности и скорости движения воздуха должны распределяться равномерно по площади помещения в соответствии с таблицей 2.2.
Таблица 2.2
Минимальное количество участков измерения температуры,

относительной влажности и скорости движения воздуха


Площадь помещения,
м2


Число участков измерения

До 100

4

От 100 до 400

8

Св. 400

Количество участков определяется расстоянием
между ними, которое не должно превышать 10 м



2.1.9. Температуру внутренней поверхности

следующая страница >>