microbik.ru
1 2 ... 5 6

Министерство образования и науки республики Казахстан

КазНУ им. Аль-Фараби



МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

КАФЕДРА ИНФОРМАЦИОННЫХ СИСТЕМ

КУРСОВАЯ РАБОТА
по дисциплине

Системный анализ и задачи

математического программирования
на тему:

Методы экономического программирования.
выполнил: студент 2 курса,

группы ИС 04 03 А

Гришко Михаил

проверил: к. ф.-м. н., доцент кафедры ИС Тургенбаева Г.А.


Алматы 2005г.
Содержание.

1. Введение…………………………………………………………………………………………..3

2. Теоретическая часть……………………………………………………………………………...4

2.1. Математическое представление и структура экономических показателей………………4

2.2. Предварительный анализ и обработка временных рядов…………………………………5

2.2.1. Выявление и устранение аномальных значений……………………………………..5

2.2.2. Выявление тренда……………………………………………………………………...5

2.2.3. Определение сезонных колебаний……………………………………………………7

2.2.4. Сглаживание временных рядов……………………………………………………….9

2.3. Расчет показателей динамики развития экономических процессов…………………….10

2.4. Прогнозирование экономических показателей…………………………………………...13

2.4.1. Трендовые модели на основе кривых роста………………………………………...13

2.4.1.1. Выбор типа кривых роста…………………………………………………….14

2.4.1.2. Методы определения параметров отбора кривых роста…………………...17

2.4.1.3. Определение адекватности трендовой модели…………………………….18

2.4.1.4. Точность прогноза трендовой модели……………………………………....20

2.4.1.5. Верификация прогноза……………………………………………………….22

2.4.2. Адаптивные модели прогнозирования………………………………………………23

3. Практическая часть……………………………………………………………………………..25

3.1. Постановка задачи…………………………………………………………………………..25

3.2. Построение модели…………………………………………………………………………25

3.3. Адекватность и точность…………………………………………………………………..28

3.3.1. Случайность колебаний уровней остаточной последовательности……………….28

3.3.2. Соответствие распределения случайной компоненты нормальному закону распределения……………………………………………………………………….28

3.3.3. Равенство математического ожидания случайной компоненты нулю……………28

3.3.4. Независимость значения уровней случайной компоненты………………………..29

3.3.5. Точность прогноза построенной трендовой модели……………………………….29

4. Заключение……………………………………………………………………………………...30

5. Список использованных источников………………………………………………………….31

1. Введение.

Предсказание временных рядов – необходимый элемент любой инвестиционной деятельности. Сама идея инвестиций – вложение денег сейчас с целью получения дохода в будущем – основывается на идее прогнозирования будущего. Соответственно, предсказание финансовых временных рядов лежит в основе деятельности всей индустрии инвестиций – всех бирж и внебиржевых систем торговли ценными бумагами.

Прогнозирование экономических показателей основано на идее экстраполяции. Под экстраполяцией обычно понимают распространение закономерностей, связей и соотношений, действующих в изучаемом периоде, за его пределы. В более широком смысле слова ее рассматривают как получение представлений о будущем на основе информации, относящейся к прошлому и настоящему. В процессе построения прогнозных моделей в их структуру иногда закладываются элементы будущего предполагаемого состояния объекта или явления, но в целом эти модели отражают закономерности, наблюдаемые в прошлом и настоящем, т.е. прогноз возможен лишь относительно таких объектов и явлений, которые в значительной степени детерминируются прошлым и настоящим.

Цель данного курсового проекта – рассмотреть основные методы экономического прогнозирования, а также решить поставленную задачу с помощью трендовых моделей на основе кривых роста.

2. Теоретическая часть

2.1. Математическое представление и структура экономических показателей.

Динамические процессы, происходящие в экономических системах, чаще всего проявляются в виде ряда последовательно расположенных в хронологическом порядке значений того или иного показателя, который в своих изменениях отражает ход развития изучаемого явления в экономике. Эти значения, в частности, могут служить для обоснования (или отрицания) различных моделей социально-экономических систем. Они служат также основой для разработки прикладных моделей прогнозирования особого вида, которые будут подробнее рассматриваться ниже.

Последовательность наблюдений одного показателя (признака), упорядоченных в зависимости от последовательно возрастающих или убывающих значений другого показателя (признака), называют динамическим рядом, или рядом динамики. Если в качестве признака, в зависимости от которого происходит упорядочение, берется время, то такой динамический ряд называется временным рядом.

Если во временном ряду проявляется длительная тенденция изменения экономического показателя, то говорят, что имеет место тренд. Таким образом, под трендом понимается изменение, определяющее общее направление развития, основную тенденцию временных рядов. В связи с этим экономико-математическая динамическая модель, в которой развитие моделируемой экономической системы отражается через тренд ее основных показателей, называется трендовой моделью. Для выявления тренда во временных рядах, а также для построения и анализа трендовых моделей используется аппарат теории вероятностей и математической статистики.

Во временных рядах экономических процессов могут иметь место более или менее регулярные колебания. Если они носят строго периодический или близкий к нему характер и завершаются в течение одного года, то их называют сезонными колебаниями. В тех случаях, когда период колебаний составляет несколько лет, то говорят, что во временном ряде присутствует циклическая компонента. Тренд, сезонная и циклическая компоненты называются регулярными, или систематическими компонентами временного ряда. Составная часть временного ряда, остающаяся после выделения из него регулярных компонент, представляет собой случайную, нерегулярную компоненту. Она является обязательной составной частью любого временного ряда в экономике, так как случайные отклонения неизбежно сопутствуют любому экономическому явлению.

Таким образом, в общем случае имеем временной ряд, состоящий из n уровней:

y1 , y2 , … , yn . (1)

В самом общем случае временной ряд экономических показателей можно разложить на четыре структурно образующих элемента:

  • тренд, составляющие которого обозначаются Ut, t = 1, 2 , ..., n;

  • сезонная компонента, обозначаемая через Vt, t = 1, 2, ..., n;

  • циклическая компонента, обозначаемая через Ct, t = 1, 2 , ..., n;

  • случайная компонента, которую обозначают εt, t = 1, 2 , ..., n.

Если систематические компоненты временного ряда определены правильно, что как раз и составляет одну из главных целей при разработке трендовых моделей, то остающаяся после выделения из временного ряда этих компонент так называемая остаточная последовательность (ряд остатков) будет случайной компонентой ряда, т.е. будет обладать следующими свойствами:

  • случайностью колебаний уровней остаточной последовательности;

  • соответствием распределения случайной компоненты нормальному закону распределения;

  • равенством математического ожидания случайной компоненты нулю;

  • независимостью значений уровней случайной последовательности, то есть отсутствием существенной автокорреляции.

Проверка адекватности трендовых моделей основана на проверке выполняемости у остаточной последовательности указанных четырех свойств. Если не выполняется хотя бы одно из них, модель признается неадекватной; при выполнении всех четырех свойств модель адекватна.
2.2. Предварительный анализ и обработка временных рядов экономических показателей.

Предварительный анализ временных рядов экономических показателей заключается в основном в выявлении и устранении аномальных значений уровней ряда, а также в определении наличия тренда и его характера в исходном временном ряде. К предварительной обработке временных рядов относятся методы изменения временных рядов в целью более четкого выделения тенденций развития, сглаживания временного ряда и др.
2.2.1 Выявление и устранение аномальных значений временных рядов экономических показателей.

Под аномальным уровнем понимается отдельное значение уровня временного ряда, которое не отвечает потенциальным возможностям исследуемой экономической системы и которое, оставаясь в качестве уровня ряда, оказывает существенное влияние на значения основных характеристик временного ряда, в том числе на соответствующую трендовую модель. Причинами аномальных наблюдений могут быть ошибки технического порядка, или ошибки, первого рода: ошибки при агрегировании и дезагрегировании показателей, при передаче информации и другие технические причины. Ошибки первого рода подлежат выявлению и устранению. Кроме того, аномальные уровни во временных рядах могут возникать из-за воздействия факторов, имеющих объективный характер, но проявляющихся эпизодически, очень редко — ошибки второго рода; они устранению не подлежат.

Для выявления аномальных уровней временных рядов используются методы, рассчитанные для статистических совокупностей.

Метод Ирвина, например, предполагает использование следующей формулы:

; t = 1, 2 , ..., n, (2)

где среднеквадратическое отклонение рассчитывается в свою очередь с использованием формул:

; . (3)

Расчетные значения λt сравниваются с табличными значениями критерия Ирвина λα, и если оказываются больше табличных, то соответствующее значение yt уровня ряда считается аномальным.

После выявления аномальных уровней ряда обязательно определение причин их возникновения. Если точно установлено, что они вызваны ошибками первого рода, то они устраняются либо заменой аномальных уровней простой средней арифметической двух соседних уровней ряда, либо заменой аномальных уровней соответствующими значениями по кривой, аппроксимирующей данный временной ряд.
2.2.2. Выявление тренда.

Для определения наличия тренда в исходном временном ряду применяется несколько методов:

Метод проверки разностей средних уровней.

Реализация этого метода состоит из четырех этапов. На первом этапе исходный временной ряд

y1 , y2 , … , yn

разбивается на две примерно равные по числу уровней части: в первой части n1 первых уровней исходного ряда, во второй – n2 остальных уровней (n1+ n2= n).

На втором этапе для каждой из этих частей вычисляются средние значения и дисперсии:

; ; (4)

; . (5)

Третий этап заключается в проверке равенства (однородности) дисперсий обеих частей ряда с помощью F-критерия Фишера, которая основана на сравнении расчетного значения этого критерия:



F = (6)


с табличным (критическим) значением критерия Фишера Fα с заданным уровнем значимости (уровнем ошибки) α. В качестве α чаще всего берут значения 0,1 (10%-ная ошибка), 0,05 (5%-ная ошибка), 0,01 (1%-ная ошибка). Величина 1 - α называется доверительной вероятностью.

Если расчетное значение F меньше табличного Fα, то гипотеза о равенстве дисперсий принимается и переходят к четвертому этапу. Если F больше или равно Fα, гипотеза о равенстве дисперсий отклоняется и делается вывод, что данный метод для определения наличия тренда ответа не дает.

На четвертом этапе проверяется гипотеза об отсутствии тренда с использованием t-критерия Стьюдента. Для этого определяется расчетное значение критерия Стьюдента по формуле:

, (7)

где σ— среднеквадратическое отклонение разности средних:
. (8)

Если расчетное значение t меньше табличного значения статистики Стьюдента tα с заданным уровнем значимости α, гипотеза принимается, т.е. тренда нет, в противном случае тренд есть. Заметим, что в данном случае табличное значение tα берется для числа степеней свободы, равного , при этом данный метод применим только для рядов с монотонной тенденцией.

Метод Фостера—Стъюарта. Этот метод обладает большими возможностями и дает более надежные результаты по сравнению с предьщущим. Кроме тренда самого ряда (как говорят, тренда в среднем), он позволяет установить наличие тренда дисперсии временного ряда: если тренда дисперсии нет, то разброс уровней ряда постоянен; если дисперсия увеличивается, то ряд «раскачивается» и т. д.

Реализация метода содержит четыре этапа.

На первом этапе производится сравнение каждого уровня исходного временного ряда, начиная со второго уровня, со всеми предыдущими, при этом определяются две числовые последовательности:

1, если yt больше всех предыдущих уровней;

kt = (9)

0, в противном случае,




1, если yt меньше всех предыдущих уровней;

lt = (10)

0, в противном случае
t = 2, 3 , ..., n.
На втором этапе вычисляются величины s и d:

; (11)

. (12)

Величина s, характеризующая изменение временного ряда, принимает значения от 0 (все уровни ряда равны между собой) до n - l (ряд монотонный). Величина d характеризует изменение дисперсии уровней временного ряда и изменяется от -(n - 1) (ряд монотонно убывает) до (n - 1) (ряд монотонно возрастает).

Третий этап заключается в проверке гипотез: можно ли считать случайными

  1. отклонение величины s от величины μ - математического ожидания величины s для ряда, в котором уровни расположены случайным образом,

  2. отклонение величины d от нуля.

Эта проверка проводится с использованием расчетных значений t-критерия Стьюдента для средней и для дисперсии:

; ; (13)

; ; (14)

где μ - математическое ожидание величины s, определенной для ряда, в котором уровни расположены случайным образом;

σ1 - среднеквадратическое отклонение для величины s;

σ2 - среднеквадратическое отклонение для величины d.

На четвертом этапе расчетные значения ts и td сравниваются с табличным значением t-критерия Стьюдента с заданным уровнем значимости tα. Если расчетное значение меньше табличного, то гипотеза об отсутствии соответствующего тренда принимается; в противном случае тренд есть. Например, если ts больше табличного значения tα, а td меньше tα, то для данного временного ряда имеется тренд в среднем, а тренда дисперсии уровней ряда нет.

следующая страница >>