microbik.ru
1 2 3 4



На правах рукописи



ЧЕРДАНЦЕВ Николай Васильевич


РАЗРАБОТКА МЕТОДИЧЕСКИХ ОСНОВ ИЗУЧЕНИЯ ГЕОМЕХАНИЧЕСКОГО СОСТОЯНИЯ АНИЗОТРОПНОГО

(ПО ПРОЧНОСТИ) МАССИВА С СИСТЕМОЙ ВЫРАБОТОК


Специальность 25.00.20 – Геомеханика, разрушение горных пород,

рудничная аэрогазодинамика и горная теплофизика

Автореферат диссертации на соискание

учёной степени доктора технических наук

Кемерово 2007
Работа выполнена в Институте угля и углехимии СО РАН

Научный консультант:

доктор технических наук, профессор Изаксон Всеволод Юльевич

Официальные оппоненты:

доктор технических наук, профессор Кузнецов Сергей Васильевич,

Институт проблем комплексного

освоения недр РАН

доктор технических наук, Кулаков Геннадий Иванович,

Институт горного дела СО РАН

доктор технических наук, профессор Хямяляйнен Вениамин Анатольевич,

ГОУ ВПО Кузбасский государствен
ный технический университет


Ведущая организация: ГОУ ВПО Сибирский государствен
ный индустриальный университет


Защита состоится_______________2007 г. в ___ часов на заседании диссертационного совета Д 003.036.01 при институте угля и углехимии СО РАН по адресу:

650610, г. Кемерово, ГСП, ул. Рукавишникова, 21.

Факс: (384-2) 21-14-00. E – mail: goericke @ kemsc. ru.

С диссертацией можно ознакомиться в библиотеке Института угля и углехимии СО РАН.


Автореферат разослан __________________ 2007 г.


Учёный секретарь

диссертационного совета,

доктор технических наук Преслер В.Т.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В существующих моделях свойства массива горных пород - упругость, пластичность, ползучесть достаточно полно представлены. Однако одно из его основных физических свойств, связанное со структурой, - прочностной анизотропией, до сих пор учитывается слабо и практически не используется в анализе его геомеханического состояния. Прочностная анизотропия обусловлена, в первую очередь, поверхностями ослабления (слоистость, кливаж, тектонические нарушения), по которым характеристики прочности ниже, чем по другим направлениям.

Горные породы вблизи выработок разрушаются, прежде всего, по поверхностям ослабления, образуя за их контуром зоны нарушения сплошности (ЗНС) массива. Наличие этих зон показатель техногенной нарушенности массива и критерий его устойчивости. Количественные оценки нарушенности и устойчивости массива, связанные с техногенными воздействиями, до сих пор отсутствуют. В то же время размеры и конфигурация ЗНС определяют рациональные формы выработок, параметры их крепи, а также границы направленной фильтрации газа в угольных пластах. В массивах, вмещающих системы выработок, при определенных условиях происходит интеграция ЗНС, т.е. их объединение в зоны, называемые областями неустойчивости массива. Установление размеров и конфигурации областей неустойчивости также важно при проведении системы горных выработок.

Для расчёта ЗНС массива с поверхностями ослабления должны быть известны компоненты поля напряжений по этим поверхностям. Аналитические методы расчёта полей напряжений ограничены узким кругом выработок. В численных методах массив горных пород представляется дискретной структурой. Она должна учитывать расположение поверхностей ослабления. В массиве с произвольно ориентированными поверхностями ослабления универсальную дискретную структуру построить практически невозможно. Метод граничных элементов - единственный численный метод, который определяет поле напряжений по любым системам поверхностей ослабления, поскольку в этом методе дискретно представляется не весь массив, а лишь поверхность выработки. Однако в задачах геомеханики этот метод до сих пор крайне редко используется. Отсутствие компьютерной модели геомеханического состояния массива с прочностной анизотропией и количественных методов оценки этого состояния в окрестности системы выработок затрудняет процесс изучения состояния реальных массивов горных пород.

В связи с этим разработка методических основ изучения геомеханического состояния анизотропного (по прочности) массива с системой выработок, включающая модель этого состояния, методы её компьютерной реализации, количественной оценки устойчивости массива и классификации выработок по степени их влияния на окружающий массив, является актуальной проблемой, имеющей существенное научное и прикладное значение.

Работа выполнялась инициативно и в рамках проекта СО РАН 25.2.4 «Механика газоводоносных (в том числе многолетнемёрзлых) геоматериалов».

Целью работы является получение достоверных количественных оценок анизотропного (по прочности) массива с системой выработок на основе созданного научно-методического инструментария (обеспечения).

Идея работы состоит в том, что прочностная анизотропия, не влияя на распределение поля напряжений упругого массива, обеспечивает адекватный переход от промежуточного этапа анализа поля напряжений к конечному количественному его этапу – оценке нарушенности и устойчивости массива.

Задачи исследований:

1. Разработка модели геомеханического состояния массива горных пород с прочностной анизотропией, вмещающего систему выработок.

2. Разработка алгоритма и программного обеспечения для реализации модели и комплексного изучения нарушенности массива около системы выработок. Установление рациональных параметров и критерия устойчивости алгоритма.

3. Изучение нарушенности приконтурного массива с протяженными одиночными выработками в зависимости от форм их поперечных сечений и характерных размеров.

4. Оценка влияния протяжённости одиночной выработки на нарушенность массива и установление критерия рационального применения плоской (двумерной) и объёмной (трёхмерной) постановок задач геомеханики.

5. Определение областей неустойчивости массива, вмещающего систему протяжённых цилиндрических выработок. Оценка влияния опорного давления на устойчивость массива вблизи этой системы выработок.

6. Установление закономерностей нарушенности массива в окрестности сопрягающихся выработок.

7. Адаптация модели к реальным массивам и апробация разработанных методов моделирования геомеханического состояния массива с прочностной анизотропией в натурных условиях.

Методы исследования:

- методы теории упругости для постановки задачи о выработке в массиве и получении тензоров Грина и Кельвина;

- метод механических квадратур для численного решения граничного интегрального уравнения краевой задачи теории упругости;

- метод граничных элементов для построения непрерывного поля напряжений в массиве с системой выработок;

- методы механики разрушения (теория Мора - Кузнецова) при оценке нарушенности массива, вмещающего систему выработок, по поверхностям ослабления;

- методы механики деформируемого твёрдого тела для расчёта подкреплений анкерного типа и исследования перемещений контуров выработок;

- методы вычислительной математики для решения систем линейных уравнений и сплайн-аппроксимации контуров ЗНС;

- методы разработки алгоритма программирования и вычислительные технологии (MATHCAD, MATLAB) для реализации модели и графической визуализации результатов;

Научные положения:

  1. Методы, реализующие модель геомеханического состояния массива с прочностной анизотропией, создают условия для комплексного изучения техногенной нарушенности массива в окрестности произвольной системы выработок.

2. Нарушенность массива, вмещающего протяжённые одиночные выработки, в большей мере зависит от формы контуров поперечного сечения, чем от их периметров, а вблизи щелевых выработок она пропорциональна отношению их характерных размеров.

3. Для протяжённой выработки характерно единообразие нарушенности массива на большей части её длины за исключением малых областей, примыкающих к торцам. Критерием рационального применения плоской и объёмной постановок задач геомеханики является длина выработки.

4. Размеры и конфигурация областей неустойчивости массива определяются параметрами массива и геометрией системы цилиндрических выработок. Для описания этих областей эффективен диаграммный метод построения их границ по критерию смыкания ЗНС отдельных выработок.

5. Нарушенность массива в зоне опорного давления в большей мере зависит от максимума, чем от длины его опорной зоны. При этом выделяются области преимущественного влияния его максимума (большие площади эпюры опорного давления) и длины (малые площади эпюры).

6. Геомеханическое состояние массива с прочностной анизотропией в окрестности сопрягающихся выработок определяется неравномерным характером нарушенности вдоль осей выработок, её концентрацией непосредственно на сопряжении выработок, несущественностью влияния угла смежности выработок.

Достоверность научных положений и выводов подтверждается:

- корректной постановкой краевой задачи теории упругости, использованием критерия прочности Мора – Кузнецова и применением метода граничных элементов;

- совпадением результатов решения канонических задач геомеханики методом граничных элементов с результатами их решения аналитическими методами (погрешность не более 1%);

- многовариантным вычислительным экспериментом, проведённым на системах плоских и объёмных выработок, в том числе сопряжений, при различных параметрах среды (более 900 вариантов, включающих примерно 2000 расчётных слоёв, соответствующих сечениям выработок);

- сходимостью результатов расчёта ЗНС массива за контуром выработок с результатами экспериментальных исследований на физических моделях и горных объектах (отклонение не более 15%).

Научное значение работы состоит в разработке комплекса методов компьютерного моделирования геомеханического состояния массива с прочностной анизотропией, вмещающего систему выработок. К их числу относятся:

- метод построения непрерывного поля напряжения вблизи выработок, точечная дискретизация которого определяется рациональными размерами граничных элементов и ячеек расчётной сетки;

- методы оценки нарушенности массива и его устойчивости в окрестности выработок; - метод вычислительного эксперимента для изучения закономерностей проявления этого состояния в зависимости от параметров среды;

- метод модульной аппроксимации поверхностей выработок и их систем;

- метод классификации протяжённых, одиночных выработок по их влиянию на окружающий массив.

Интеграция этих методов создала достаточный научно-методический инструментарий для изучения реальных физических сред на основе их модельных аналогов, ориентированных на конкретные проявления геомеханического состояния при техногенном воздействии на массив горных пород.

Научная новизна работы заключается в том, что:

- разработанная модель геомеханического состояния массива горных пород, учитывающая прочностную анизотропию в виде поверхностей ослабления и опорное давление, интегрирует два подхода по определению его напряжённо-деформированного состояния (НДС) – аналитический (интегральное уравнение краевой задачи) и численный (дискретизация краевой задачи посредством граничных элементов), что обеспечивает её универсальность применительно к выработкам любых форм;

- разработанный алгоритм в отличие от традиционной реализации моделей НДС ориентирован на расчёт ЗНС, программно поддерживает универсальность разработанной модели и дополнительно обладает свойством комплексности, поскольку обеспечивает изучение нарушенности и устойчивости массивов в строго поставленном порядке варьирования физических параметров среды и геометрии выработок, обусловленном постановкой вычислительного эксперимента;

- введение коэффициента нарушенности и интенсивности нарушения, в отличие от коэффициента концентрации напряжений, создало методическую основу единообразного количественного изучения нарушенности и устойчивости массива, позволило практически обосновать сходимость алгоритма и установить его рациональные параметры – размеры граничных элементов и ячейки расчётной сетки;

- получен численный критерий разграничения плоской и объёмной постановок задач геомеханики и выявлен характер нарушенности массива вдоль осей выработок;

- построены диаграммы интенсивности нарушения массива в окрестности системы цилиндрических выработок, которые создают эффективный механизм выявления его областей устойчивости в зависимости от параметров среды и взаимного размещения выработок;

- установлено дифференцированное влияние параметров опорного давления (максимум и длина опорной зоны) на нарушенность массива, что обеспечивает возможности прогноза геомеханического состояния реального массива, вмещающего систему цилиндрических выработок, в зоне повышенного горного давления.

Практическое значение работы заключается в следующем:

- компьютерная модель геомеханического состояния массива с прочностной анизотропией реализована в среде современных общеизвестных математических пакетов, что делает её доступной широкому кругу пользователей – геомехаников и инженеров, использующих моделирование как инструмент для решения своих прикладных задач;

- установлены графические и аналитические зависимости нарушенности массива вблизи типовых, нетиповых и щелевых протяжённых выработок от их геометрических параметров, что обеспечивает выбор наиболее устойчивых форм их сечений;

- построенные диаграммы неустойчивости массива с системой цилиндрических выработок дают обоснованные оценки устойчивости массива в зависимости от конкретных характеристик среды;

- полученные зависимости нарушенности массива в окрестности типовых сопряжений выработок, их концентрация и особенности распределения вдоль выработок обеспечивают разработку рациональных паспортов крепления сопряжений;

- модель легко адаптируется к реальным массивам горных пород и вследствие этого позволяет получить научно обоснованные технические и технологические решения при проектировании схем вскрытия и подготовки месторождений полезных ископаемых.

Личный вклад автора заключается в:

- разработке модели геомеханического состояния массива с прочностной анизотропией, вмещающего систему выработок;

- реализации модели посредством разработанных методов моделирования и программ расчёта геомеханического состояния массива вблизи систем выработок;

- установлении закономерностей нарушенности массива вокруг одиночных и сопрягающихся выработок, включая и разграничение областей применения плоского и объемного вариантов модели;

- получении графических и аналитических зависимостей нарушенности массива около протяжённых типовых, нетиповых и щелевых выработок;

- определении областей неустойчивости массива, вмещающего системы протяжённых цилиндрических выработок и оценке влияния опорного давления на степень нарушенности массива с этой системой выработок;

- адаптации модели и апробации разработанных методов моделирования к реальным массивам горных пород.

Реализация работы. Результаты работы использованы на следующих угольных предприятиях Кузбасса: ООО «шахта Южная» - при проектировании анкерного крепления трёх наклонных стволов и двух вентиляционных штреков, Междуреченский разрез «Распадский» ЗАО «Распадская угольная компания» - в проекте по внедрению «HIGHWALL», шахта «Осинниковская» ОАО «Южкузбассуголь» - при обосновании крепления канатными анкерами вентиляционного штрека и прилегающего к нему магистрального конвейерного штрека, шахта «Котинская» ОАО «Суэк» - в обосновании разрушения бортов в призабойных частях подготовительных выработок.


следующая страница >>