microbik.ru
  1 2 3

2.5. СТРУКТУРНЫЕ СХЕМЫ СИСТЕМ УПРАВЛЕНИЯ [7].

Преобразования структурных схем. Структурная схема системы в простейшем случае строится из элементарных динамических звеньев. Несколько элементарных звеньев могут быть заменены одним звеном со сложной передаточной функцией. Для этого существуют правила эквивалентного преобразования структурных схем.

Последовательное соединение (рис. 2.5.1) - выходная величина предшествующего звена подается на вход последующего. При этом можно записать:




Рис. 2.5.1.
y1 = W1 y0; y2 = W2 y1; ... ; yn = Wn yn-1,

yn = W1 W2 ...Wn y0 = Wэкв y0.

Wэкв = Wi.




Рис. 2.5.2.
Передаточные функции последовательно соединенных звеньев перемножаются.

Параллельное соединение (рис.2.5.2) - на вход каждого звена подается один и тот же сигнал, а выходные сигналы складываются:

y = y1 + y2 + ... + yn = (W1 + W2 + ... + Wn) y0 = Wэкв y0.

Wэкв = Wi.




Рис. 2.5.3.
Цепочка звеньев, соединенных параллельно, преобразуется в звено с передаточной функцией, равной сумме передаточных функций отдельных звеньев.

Замкнутое соединение с обратной связью (рис. 2.5.3а) - звено охвачено положительной или отрицательной обратной связью. Участок цепи, по которому сигнал идет с выхода на вход, называется цепью обратной связи с передаточной функцией Wос. Для отрицательной обратной связи (ОС):

y = Wп u; y1 = Wос y; u = y0 - y1,

y= Wп y0 - Wп y1 = Wп y0 - Wп Woc y = y(1+Wп Woc) = Wп y0 = Wэкв y0,

Wэкв = Wп /(1+Wп Wос).

Для положительной ОС:

Wэкв = Wп /(1-Wп Wос).

Если Woc = 1, то обратная связь называется единичной (рис. 2.5.3б):

Wэкв = Wп /(1 ± Wп).




Рис. 2.5.4.
Как прямая Wп, так и обратная Wос цепь может состоять из нескольких функциональных блоков и образует замкнутую систему. Замкнутую систему называют одноконтурной, если при ее размыкании (отсоединении обратной связи от сумматора с y0) получают цепочку из последовательно соединенных элементов. Замкнутые системы бывают и многоконтурными (рис. 2.5.4).Чтобы найти эквивалентную передаточную функцию для данной схемы нужно сначала определить передаточные функции отдельных участков.

2.6. УСТОЙЧИВОСТЬ И КАЧЕСТВО СИСТЕМ УПРАВЛЕНИЯ [2, 13].

Управляемость и наблюдаемость. Задача управления системой состоит в определении такой функции u(t), при которой осуществляется целенаправленное движение (изменение состояния) системы. Всегда ли эта задача имеет решение? Ответ на этот вопрос дают два свойства системы – управляемость и наблюдаемость.

Линейная система является управляемой, если она может быть переведена из любого начального состояния y(0) в любое конечное состояние y(T) за конечное время Т.

Линейная система является наблюдаемой, если любое ее состояние y(0) можно восстановить по значениям u(t) и y(t), измеренным на интервале 0 > t > T.

Устойчивость систем. Понятие устойчивости системы связано со способностью системы возвращаться в состояние равновесия после исчезновения внешних сил, которые вывели ее из этого состояния. Если система неустойчива, то она не возвращается в состояние равновесия.

При возмущениях в системе возникают колебания Y(t), которые могут быть затухающими, незатухающими, стремящимися к положению равновесия, или уходящими от него (неустойчивые).

Систему называют устойчивой, если будучи выведенной из состояния равновесия она возвращается (с допустимой погрешностью) к прежнему положению после снятия возмущающего воздействия. Простейшая аналогия устойчивости – шарик внутри вогнутой поверхности, который всегда возвращается в самое нижнее положение на поверхности независимо от того, выведен ли он из этого положения движением самой поверхности или импульсным воздействием на шарик. Шарик на выпуклой поверхности – пример неустойчивой системы.

При определении устойчивости системы рассматривается ее свободное поведение при равенстве нулю возмущающих входных воздействий. Состояние системы определяется однородным дифференциальным уравнением замкнутой системы:

an y(n) + an-1 y(n-1) + … +a1 y' + a0 = 0.

Характеристическое уравнение:

an p(n) + an-1 p(n-1) + … +a1 p' + a0 = 0. (2.6.1)

Общее решение: Y(t) = Ck exp(pkt), если pk – действительные корни.

Положение А.М. Ляпунова для определения устойчивости систем по корням характеристического уравнения:

  1. Если характеристическое уравнение линеаризованной системы имеет все корни с отрицательными действительными числами, то система устойчива.

  2. Если хотя бы один корень имеет положительную часть, то система неустойчива.

  3. При наличии нулевых или чисто мнимых корней поведение реальной системы не всегда (даже качественно) определяется её линеаризованным уравнением.

Точность работы систем. Устойчивость является необходимым, но не достаточным условием для реализации систем. Одна из основных характеристик качества регулирования – это точность, под которой понимается величина ошибки регулирования в различных установившихся режимах.

В системах стабилизации таким режимом является установившееся состояние (положение равновесия), а точность системы характеризуется величиной статической ошибки ст отклонения от заданного состоянии при влиянии дестабилизирующих воздействий. Самым простым способом изучения точности является использование передаточной функции по ошибке (мера малости ошибки слежения):

W(p) = 1/(1+W(p)), (2.6.2)

и меры точности воспроизведения задающего воздействия:

Wз(p) = W(p)/(1+W(p)). (2.6.3)

Для абсолютно точной системы W(p) = 0, Wз(p) = 1. Реальные частотные характеристики систем отличаются от идеальных без превышения заданного значения статистической ошибки в некоторой полосе пропускания от н до в. Соответственно, для повышения точности необходимо обеспечивать выполнение условий: W(p) → 0, Wз(p) → 1.

Если допустимая ошибка мала, необходимо применять регуляторы с интегральной составляющей в законе регулирования, обеспечивающие регулирование без статической ошибки. Следует учитывать также, что ошибка слежения зависит от вида задающего воздействия и связана со всеми производными входного сигнала. При отсутствии в системе интеграторов линейно возрастающие и степенные воздействия могут приводить к неограниченному нарастанию ошибок слежения.

Для систем с обратной связью передаточная функция при размыкании системы (разрыве обратной связи) определяется выражением:

Wpc(p) = K(b0 pm + b1 pm-1 +…+1)/ (a0 pm + a1 pm-1 +…+1), (2.6.4)

где К- коэффициент усиления (K=Wpc(0)). Отсюда следует, что увеличение К разомкнутой системы является одним из основных способов повышения точности систем. Однако это не означает, что таким способом можно реализовать любую желаемую точность, так как при чрезмерном увеличении К возможна потеря устойчивости замкнутой системы.

Качество работы систем. Устойчивость системы является необходимым, но недостаточным условием ее работоспособности. Устойчивая система может оказаться недостаточно точной при отработке различных воздействий; недостаточно быстродействующей при выходе на заданную величину, и т.п. При исследовании систем приходится решать задачи обеспечения требуемых показателей качества переходного процесса: быстродействия, колебательности, перерегулирования, характеризующих точность и плавность протекания процесса. Качество работы системы в конечном счете определяется величиной ошибки, равной разности между требуемым и действительными значениями регулируемой величины.

Для определения качества динамической системы используются критерии качества, которые можно разбить на 4-е группы.

К первой группе относятся критерии, использующие величину ошибки в различных типовых режимах. Эту группу называют критериями точности динамических систем регулирования.

К второй группе относятся критерии, определяющие величину запаса устойчивости, то есть критерии, устанавливающие, насколько далеко от границы уст­ойчивости находится система регулирования.

Наиболее опасной для динамической системы является колебательная граница устойчивости. Это определяется тем, что стремление повысить общий коэффициент усиления в системе, как правило, приводит к приближению системы именно к колебательной границе устойчивости и затем – к возникновению незатухающих автоколебаний.

Третья группа критериев качества определяет быстродейст­вие системы регулирования. Под быстродействием понимается быстрота реагирования системы регулирования на появление управляющих и возмущающих воздействий. Наиболее просто быстродействие может оцениваться по времени затухания переходного процесса системы.

К четвертой группе критериев качества относятся интегральные критерии, дающие оценку некоторых обобщенных свойств, которые могут учитывать точность, запас устойчивости и быстродействие одновременно.




Рис. 2.6.1.
Интегральные показатели качества системы определяются, как правило, непосредственно по кривой переходного процесса (после включения системы или по реакции на единичную входную ступеньку), условный пример которого приведен на рис. 2.6.1, где:  – динамические отклонения управляемой величины от задания Yo (установившегося режима), tp – время регулирования, т.е. продолжительность переходного процесса (характеризует быстродействие системы).

Степень затухания:

1 – 3)/1.

Коэффициент перерегулирования (для переходных процессов с колебательным режимом):

100(2 /1) %.

Интегральный критерий качества:

I =|(t)| dt.

Интегральный квадратичный критерий качества:

I =2(t) dt.

Чем меньше оценка значений коэффициента перерегулирования и критерия качества, тем лучше качество переходного процесса системы.

литература

2. Повзнер Л.Д. Теория систем управления: Учебное пособие для вузов. - М.: Изд. МГГУ, 2002. - 472 с.

7. Туманов М.П. Теория автоматического управления: Лекции. URL: http://elib.ispu.ru/library/lessons/Tihonov_2/index.htm.

8. Туманов М.П. Теория управления. Теория линейных систем автоматического управления: Учебное пособие. – МГИЭМ. М., 2005, 82 с. URL: http://window.edu.ru/window_catalog/files/r24738/5.pdf.

9. Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. – М.: Наука, 1975.

13. Бирюков С.В. Основные понятия теории автоматического управления. - URL: http://bookz.ru/rar/bookz/teacher/tau_ucheb.rar

Главный сайт автора ~ Лекции по ОТУ

О замеченных опечатках, ошибках и предложениях по дополнению: davpro@yandex.ru.

Copyright ©2008-2009 Davydov А.V.




<< предыдущая страница